quantco



Machine Learning with Python

Hands-on, from zero to hero

Q

quantco



Introduction

&£
Bozhidar Vasilev Ivan Dimitrov Simeon Stoykov
Software @ Quantco Software @ Quantco Software @ Quantco
(Public Health Insurance) (Public Health Insurance) (Car Insurance Pricing)

Q



Why Bother with ML

State of the art for many relevant problems:
e Cool Al
e Automate/optimize business decisions:
o Pricing
o Fraud detection
o Demand prediction
o Medical forecasting
e Trading

Even if you are not a Data Scientists, you need to understand the workflows in order to
support them.

Q



Ecosystem

Infrastructure:

e Python

e conda

e Jupyter Notebook

Machine Learning:
e “Traditional™
o Feature Engineering
o Models
e Deep Learning (out-of-scope)
e Unsupervised (out-of-scope)
e Reinforcement (out-of-scope)

Libraries:

numpy - arrays

pandas - tables

scipy - stats

scikit-learn - models
matplotlib.pyplot -
visualization

pytorch - neural networks

(out-of-scope)

opencv - computer vision

(out-of-scope)


https://github.com/numpy/numpy
https://github.com/pandas-dev/pandas
https://github.com/scipy/scipy
https://github.com/scikit-learn/scikit-learn
https://github.com/matplotlib/matplotlib
https://github.com/pytorch/pytorch
https://github.com/opencv/opencv

Infrastructure

Set up your tools for success.

Q

quantco



How to Install Things

Install:
e fetch code
e put it atthe right place

Things:
e software
e libraries

With package managers! They know:

e where to download things from;

e how to organize them;

e how to reuse them and save memory.

Q



Conda

Some theory:

e The installable things are called packages

e Packages hosted remotely in channels

e You can install packages in local environments

e Conda is both a specification and a program (alternatives: pixi, micromamba)

Hands-on:
e Follow the instructions from https://github.com/SimeonStoykovQC/workshop-boilerplate


https://github.com/SimeonStoykovQC/workshop-boilerplate

Jupyter Notebooks

Great for prototyping and experimenting:

e Cells contain runnable code

e Notebooks are collections of cells

e Jupyter Lab: a web-based IDE for managing notebooks

Hands-on:

e Create a new Notebook

e Navigate around & run simple code
e Shortcuts

Q



Python

Why people use Python:

e Rich ecosystem of libraries

e Extensible through bindings for other languages
e Easy syntax and rapid prototyping

e Object-oriented support

Hands-on:

e Varaibles and lists

e Loops and comprehensions
e Functions

e Objects

Q

10



Machine Learning

Just statistics. On steroids.

Q

quantco



A simple example

From past data, predict the runtime of my Merge Sort implementation for future runs.

ms)

Runtime (

150

125 4

100

|
(%]
1

Ln
o
1

J
(%]
1

=
1

empirical observations

T T T
20000 40000 60000
Number of elements in the array

T
80000

T
100000

—

a W N

95
96
97
98
29

array_length
89766
82457
95942
23185
81557

78528
94578
89313
29673
73691

runtime_ms
130.441833
109.976458
130.564833
26.879167

106.686167

103.033958
125.000959
118.009458
35.491125
96.230542

12



A simple example

We expect that the runtime scales proportionally to the complexity of Merge Sort: n - log,(n)

140 A — -
empirical observations -
120 1 n*log:z(n) * 8 / 100000 y
_ 100 1 "
u H_,_:-'
E 80 1 v
£ -
— - -
= 60 -
E 40 - =
20 1 s
.--"".'..'..‘L
0 - -
T T T T T T
0 20000 40000 60000 80000 100000

Number of elements in the array

13



A slightly more complicated example

What could have changed?

Runtime (ms)

350 ~
300 A
250 A
200
150 A
100

50 A

CI_

empirical observations

T T T
20000 40000 60000
Number of elements in the array

T
80000

T
100000

14



A slightly more complicated example

Adding more “features” to your data can help explain and “learn” it better.

Runtime (ms)

350 1 empirical observations
300 - 10 digits per number
1500 digits per number
250 ~ . -
7000 digits per number .
200 N
150 A P
100 - . s see—T
50 o e
0] e
T T T T T T
0 20000 40000 60000 80000 100000

Mumber of elements in the array

B W N

95
926
97
98
29

array_length num_digits

72712 10
31922 10
42831 10
83067 10

499 10
22264 7000
4579 7000
51584 7000
97407 7000
61637 7000

runtime_ms
95.245709
38.890250
53.799792
111.578125
0.401417

58.389583
8.255084
164.453542
353.574208
201.725875

15



Machine Learning”* in a nutshell

e You have past observations, that you need to clean and transform to be useful.
e You decide how to “model” that data.
e You find the best parameters for your model.

*There are other types of Machine Learning. This is the most classic set up.

16



Feature Engineering

e Clean the data:
o Fill in any missing values
o Delete bad rows
o Delete bad columns
e Make the data more “learnable”:
o Encode categorical (non-numeric) variables
o Normalize values
o Combine features to create new ones
o Use domain knowledge

Q

17



Models

Linear regression
Decision trees

Ensemble models
Gradient boosting

18



Hands-on ML

Q

quantco



Kaggle

kaggle.comis a platform for Al competitions:
e A bit like “marathon” tasks, but you won't get far with algorithms and heuristics.
e You get training data with outputs, and test data for which you submit the predictions.

Examples:

e Predict real estate price.
e Score essays.

e Generate art.

Hands-on:
e Create an account on kaggle.com
e Enroll for the Titanic competition

Q

20


https://kaggle.com
https://kaggle.com
https://www.kaggle.com/competitions/titanic

Today'’s goal - an MVP submission

MVP - “Minimum Viable Product™
e The slimmest possible version of something,
e that still satisfies the minimum requirements.

In this case:

e The simplest possible data transformations;
e that allow to successfully train a model;

e and produce a working submission.

21



Dataframes

e Dataframe = table data (2d arrays with column headers).

e Allow for transformations: add or drop columns and rows, transform values...

e Read from/write to various formats, for example CSV and parquet.

Libraries:
e pandas: what everyone has been using in the past years
e polars: newer, faster alternative

Hands-on:

e Download the data

e Load the dataframes with pandas

e Split the training data into two: the features and the target

Q

22



Modelling

scikit-learn:
e A massive collection of ML models and utilities around them.
e Mostly everything follows the same fit-predict interface:

o model = SomeModelClass(...)

o model.fit(X, vy)

o y pred = model.predict(X new)

Hands-on:

e Create a decision tree model with the DecisionTreeClassifier.
e Train it on the training data.

e Make predictions on the test data.

e Submit it on Kaggle.

Q

23


https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

A small trained decision tree

X = df_train.drop(
columns=["Survived"],
inplace=False,

)

X.drop(

columns=["Name", "Sex", "Ticket", "Cabin", "Embarked"],

inplace=True,
)

y = df_train["Survived"
from sklearn.tree import DecisionTreeClassifier

dtc_vis = DecisionTreeClassifier(max_leaf_nodes=5)
dtc_vis.fit(X, y)

v DecisionTreeClassifier

§DecisionTreeClassifier(max_leaf_nodeszsﬁ

from sklearn.tree import plot_tree
import matplotlib.pyplot as plt

plt.figure(figsize=(20, 10)) # Set the figure size
plot_tree(
dtc_vis,
feature_names=X.columns,
class_names=["No", "Yes"],
filled=True,
rounded=True,
fontsize=18,
precision=2,
)
plt.show()

gini = 0.43
samples = 94
value = [64, 30]
class = No

Pclass <= 2.5
gini = 0.47
samples = 891
value = [549, 342]

gini = 0.49
samples = 33
value = [19, 14]
class = No

True class = No False
Fare <= 13.65 ini
B NG gini = 0.37
). samples = 491
samples = 400 value = [372, 119]
value = [177, 223] class = No
class = Yes =
Age <= 425
gini = 0.47
samples = 306
value = [113, 193]
class = Yes
Passengerld <= 150.5 gini = 0.5
gini = 0.4 s —
samples = 116
samples = 190 valuep= [61, 55]
value = [52, 138] class = No
class = Yes —
N
gini = 0.33

samples = 157
value = [33.0, 124.0]
class = Yes

24



Overfitting

When your model only performs well on the training data.

Should only learn “generalisable trends”.

Should NOT learn training data specifics that do not extend to the test data.
Overfitting on the data we have = underperforming on new data.

25



Train-test split

Kaggle competitions (and real-world problems) have a hidden dataset for grading:
e Feature engineering and parameter tuning are part of the training;

e so even if you see an improvement, it could be misleading;

e so don'tdo it on all of the datal!

Hands-on:
e Use the train test split function from scikit-learn to split your dataset;

e Evaluate your model locally with scikit-learn’s accuracy score, without submitting to
Kaggle.

Q

26



Cross-validation

Basically, a train-test split, done a few times:

Training Sets Test Set

Iteration 1 L Erron

J

Iteration 2 Error,

5
Iteration 3 Errors |__ Error = %Z Error

i=1

lteration 4 Error,

Iteration 5

Q

Errory

27



Cross-validation

why:
e It makes it more difficult to overfit in the process of:
o feature engineering
o model hyperparameter tuning
e A more accurate score of what you'll get on new data.

Hands-on:
e Use sklearn’s cross val score

27


https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

Improving our score

Improving the feature engineering:
e Remove features that add no information.

e Add the categorical features that we dropped.

e Create new features.

Improving the model we use:
e Use Random Forests
e Use Gradient-Boosted Forests

28



ML theory - on the whiteboard

How models work under the hood.

Q

quantco



Decision Trees -> Forests -> Gradient-boosting

30



Linear Regression

Simple Linear Regression

Multiple Linear Regression

31



