


Machine Learning with Python

Hands-on, from zero to hero 🚀



Introduction

Bozhidar Vasilev

Software @ Quantco
(Public Health Insurance)

Ivan Dimitrov

Software @ Quantco
(Public Health Insurance)

Simeon Stoykov

Software @ Quantco
(Car Insurance Pricing)

3



Why Bother with ML

State of the art for many relevant problems:
● Cool AI
● Automate/optimize business decisions:

○ Pricing
○ Fraud detection
○ Demand prediction
○ Medical forecasting

● Trading

Even if you are not a Data Scientists, you need to understand the workflows in order to
support them.

4



Ecosystem

Infrastructure:
● Python
● conda
● Jupyter Notebook

Machine Learning:
● “Traditional”:

○ Feature Engineering
○ Models

● Deep Learning (out-of-scope)

● Unsupervised (out-of-scope)

● Reinforcement (out-of-scope)

Libraries:
● numpy - arrays
● pandas - tables
● scipy - stats
● scikit-learn - models
● matplotlib.pyplot -

visualization
● pytorch - neural networks

(out-of-scope)

● opencv - computer vision
(out-of-scope)

5

https://github.com/numpy/numpy
https://github.com/pandas-dev/pandas
https://github.com/scipy/scipy
https://github.com/scikit-learn/scikit-learn
https://github.com/matplotlib/matplotlib
https://github.com/pytorch/pytorch
https://github.com/opencv/opencv


Infrastructure

Set up your tools for success.



How to Install Things

Install:
● fetch code
● put it at the right place

Things:
● software
● libraries

With package managers! They know:
● where to download things from;
● how to organize them;
● how to reuse them and save memory.

7



Conda

Some theory:
● The installable things are called packages
● Packages hosted remotely in channels
● You can install packages in local environments
● Conda is both a specification and a program (alternatives: pixi, micromamba)

Hands-on:
● Follow the instructions from https://github.com/SimeonStoykovQC/workshop-boilerplate

8

https://github.com/SimeonStoykovQC/workshop-boilerplate


Jupyter Notebooks

Great for prototyping and experimenting:
● Cells contain runnable code
● Notebooks are collections of cells
● Jupyter Lab: a web-based IDE for managing notebooks

Hands-on:
● Create a new Notebook
● Navigate around & run simple code
● Shortcuts

9



Python

Why people use Python:
● Rich ecosystem of libraries
● Extensible through bindings for other languages
● Easy syntax and rapid prototyping
● Object-oriented support

Hands-on:
● Varaibles and lists
● Loops and comprehensions
● Functions
● Objects

10



Machine Learning

Just statistics. On steroids.



A simple example

From past data, predict the runtime of my Merge Sort implementation for future runs.

12



A simple example

We expect that the runtime scales proportionally to the complexity of Merge Sort: n ⋅ log₂(n)

13



A slightly more complicated example

What could have changed?

14



A slightly more complicated example

Adding more “features” to your data can help explain and “learn” it better.

15



Machine Learning* in a nutshell

● You have past observations, that you need to clean and transform to be useful.
● You decide how to “model” that data.
● You find the best parameters for your model.

*There are other types of Machine Learning. This is the most classic set up.

16



Feature Engineering

● Clean the data:
○ Fill in any missing values
○ Delete bad rows
○ Delete bad columns

● Make the data more “learnable”:
○ Encode categorical (non-numeric) variables
○ Normalize values
○ Combine features to create new ones
○ Use domain knowledge

17



Models

● Linear regression
● Decision trees
● Ensemble models
● Gradient boosting

18



Hands-on ML



Kaggle

kaggle.com is a platform for AI competitions:
● A bit like “marathon” tasks, but you won’t get far with algorithms and heuristics.
● You get training data with outputs, and test data for which you submit the predictions.

Examples:
● Predict real estate price.
● Score essays.
● Generate art.

Hands-on:
● Create an account on kaggle.com
● Enroll for the Titanic competition

20

https://kaggle.com
https://kaggle.com
https://www.kaggle.com/competitions/titanic


Today’s goal - an MVP submission

MVP - “Minimum Viable Product”:
● The slimmest possible version of something,
● that still satisfies the minimum requirements.

In this case:
● The simplest possible data transformations;
● that allow to successfully train a model;
● and produce a working submission.

21



Dataframes

● Dataframe = table data (2d arrays with column headers).
● Allow for transformations: add or drop columns and rows, transform values…
● Read from/write to various formats, for example CSV and parquet.

Libraries:
● pandas: what everyone has been using in the past years
● polars: newer, faster alternative

Hands-on:
● Download the data
● Load the dataframes with pandas
● Split the training data into two: the features and the target

22



Modelling

scikit-learn:
● A massive collection of ML models and utilities around them.
● Mostly everything follows the same fit-predict interface:

○ model = SomeModelClass(...)
○ model.fit(X, y)
○ y_pred = model.predict(X_new)

Hands-on:
● Create a decision tree model with the DecisionTreeClassifier.
● Train it on the training data.
● Make predictions on the test data.
● Submit it on Kaggle.

23

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html


A small trained decision tree

24



Overfitting

● When your model only performs well on the training data.
● Should only learn “generalisable trends”.
● Should NOT learn training data specifics that do not extend to the test data.
● Overfitting on the data we have = underperforming on new data.

25



Train-test split

Kaggle competitions (and real-world problems) have a hidden dataset for grading:
● Feature engineering and parameter tuning are part of the training;
● so even if you see an improvement, it could be misleading;
● so don’t do it on all of the data!

Hands-on:
● Use the train_test_split function from scikit-learn to split your dataset;
● Evaluate your model locally with scikit-learn’s accuracy_score, without submitting to

Kaggle.

26



Cross-validation

Basically, a train-test split, done a few times:

27



Cross-validation

Why:
● It makes it more difficult to overfit in the process of:

○ feature engineering
○ model hyperparameter tuning

● A more accurate score of what you’ll get on new data.

Hands-on:
● Use sklearn’s cross_val_score

27

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html


Improving our score

Improving the feature engineering:
● Remove features that add no information.
● Add the categorical features that we dropped.
● Create new features.

Improving the model we use:
● Use Random Forests
● Use Gradient-Boosted Forests

28



ML theory - on the whiteboard

How models work under the hood.



Decision Trees -> Forests -> Gradient-boosting

30



Linear Regression

31


