

PROBLEM TREES

LITTLE TREE is interested in trees of various sizes. She has a rooted binary tree T (i.e. one where every vertex has at most 2 children), *not necessarily a balanced tree*, in front of her, whose root is denoted by 1 and whose vertices are labeled $1, \dots, 2^N$. The label of any vertex is always strictly less than any of its children.

A set of vertices S is called *valid* if no vertex in S is the ancestor of any other vertex in S . The value of S , denoted by $\text{val}(S)$, is given by the number of vertices within the tree that have *any* vertex of S as an ancestor. (We consider a node to be its own ancestor.) In other words, it is the sum of the sizes of the subtrees rooted at vertices in S .

Her enemy, LITTLE CACTUS, challenges her to the following task: Given N and the tree T , create as many *valid, nonempty* sets S_1, \dots, S_K as possible, such that

$$|S_1| + \dots + |S_K| \leq N \times 2^{N-1} + 1$$

and $\text{val}(S_i) \neq \text{val}(S_j)$ for any $i \neq j$.

- **INPUT DATA** The first line of the input file contains the integer N . The second line contains integers p_2, \dots, p_{2^N} , separated by spaces, where p_i denotes the parent of node i .
- **OUTPUT DATA** Output K , the number of sets you can create, followed by each of the K sets on its own line. To output a set, first output its size, then its elements, separated by spaces.
- **RESTRICTIONS**
 - ◆ $N \leq 18$.
 - ◆ If you output an incorrect solution (i.e. one using too many vertices, or where two sets have the same value) then you will receive 0 points for a test. Otherwise, the fraction of the score you will receive for a particular test will be equal to $(K/2^N)^{1.5}$.

#	Points	Constraints
1	7	$p_i = i - 1$ for $i = 2, \dots, 2^N$
2	12	$N = 4$
3	13	$N = 6$
4	21	$N = 9$
5	26	$N = 11$
6	21	No further restrictions

EXAMPLES

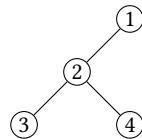
Input data	Output data
2	4
1 2 3	1 4 1 3 1 2 1 1
2	4
1 2 2	1 4 2 3 4 1 2 1 1

EXPLANATION

First case. The tree is given by

We see that the sets $S_1 = \{4\}$, $S_2 = \{3\}$, $S_3 = \{2\}$, $S_4 = \{1\}$ all have distinct values (namely 1, 2, 3, 4 respectively), and have total size $4 \leq 2 \times 2^{2-1} + 1 = 5$. Hence this output is correct.

Second case. The tree is given by



We see that the sets $S_1 = \{4\}$, $S_2 = \{3, 4\}$, $S_3 = \{2\}$, $S_4 = \{1\}$ all have distinct values (namely 1, 2, 3, 4 respectively), and have total size $5 \leq 2 \times 2^{2-1} + 1 = 5$. Hence this output is correct.