

PROBLEM HEARTS

LITTLE GREEN HEART has gifted LITTLE PURPLE HEART for Valentine's Day two arrays A and B of size N which together contain the numbers from 1 to $2 \times N$ exactly once.

LITTLE PURPLE HEART performs the following operation:

1. She chooses 2 indices l and r with $1 \leq l \leq r \leq N$.
2. She creates an array C of size $k = r - l + 1$, such that for every i with $0 \leq i < k$ she chooses either $C_i = A_{l+i}$ or $C_i = B_{l+i}$.
3. She calculates the value $\text{val}(C)$, which is equal to the number of indices i with $0 \leq i < k$ such that there is no index j with $0 \leq j < i$ and $C_j > C_i$.

LITTLE GREEN HEART, being the computer scientist that he is, wants to impress LITTLE PURPLE HEART by computing the sum of $\text{val}(C)$ for all the arrays C that she could have constructed. Since this number can be quite large, he wants to compute it modulo $10^9 + 7$. Moreover, he wants to do so for Q different operations.

Formally, given Q queries of the form (l, r) , $1 \leq l \leq r \leq N$, he defines S as the set of all the arrays C that LITTLE PURPLE HEART could have built. Then, for each query, he wants to calculate

$$P(l, r) = \sum_{C \in S} \text{val}(C) \pmod{10^9 + 7}$$

Your task is to help LITTLE GREEN HEART impress LITTLE PURPLE HEART by computing the answer to each query.

INPUT DATA The first line of the input contains the number N . The second line contains N numbers A_1, A_2, \dots, A_n representing the array A . The third line contains N numbers B_1, B_2, \dots, B_n representing the array B . Together, these 2 arrays contain the numbers from 1 to $2 \times N$ exactly once.

The fourth line contains the number of queries Q . Each of the following Q lines contains 2 numbers describing a query of the form $l \ r$.

OUTPUT DATA The output should contain Q lines representing the answers to all queries $P(l, r)$, each on a new line, computed modulo $10^9 + 7$.

RESTRICTIONS

- ◆ $1 \leq N \leq 70\,000$.
- ◆ $1 \leq Q \leq 70\,000$.

#	Points	Constraints
1	5	$1 \leq N \leq 17, 1 \leq Q \leq 100$
2	16	$1 \leq N, Q \leq 300$
3	9	$B_i = A_i + 1$ for all i with $1 \leq i \leq N$
4	17	$1 \leq N, Q \leq 10\,000$
5	11	$1 \leq Q \leq 200$
6	14	$1 \leq N \leq 50\,000, 1 \leq Q \leq 10\,000$
7	10	$1 \leq N, Q \leq 50\,000$
8	18	No further restrictions

EXAMPLES

Input data	Output data
6	37
2 10 3 4 5 6	5
11 1 9 8 7 12	
2	
3 6	
1 2	
12	32
11 10 7 23 1 18 22 16 8 14 20 6	
3 4 9 13 19 5 24 12 15 21 17 2	
1	
7 11	

EXPLANATIONS

First example. There are 2 queries.

For the first query, we will consider the subsequences A_3, A_4, A_5, A_6 and B_3, B_4, B_5, B_6 when constructing C . Next we consider all possible options for C and sum $\text{val}(C)$. For example, for $C = [3, 8, 7, 12]$, the indexes $i = 0, 1, 3$ have the property that there is no $0 \leq j < i$ such that $C_j > C_i$. Therefore, $\text{val}(C) = 3$.

Summing $\text{val}(C)$ across all arrays C that can be constructed, we get $P(3, 6) = 37$.

For the second query, we can construct 4 arrays C :

$$P(1, 2) = \text{val}([2, 10]) + \text{val}([2, 1]) + \text{val}([11, 10]) + \text{val}([11, 1]) = 2 + 1 + 1 + 1 = 5.$$

Second example. There is one query. Computing $P(7, 11) = 32$.