
1 K = 0 subtasks

Those subtasks require just finding tree diameter. First one could be solved, for
example, with running dfs/bfs from each node and brute-forcing over all pairs
(u, v), and picking one with biggest value of dist(u, v). Second subtask is solved
with well known algorithm of finding diameter in a tree in O(n) time.

2 More about general solution

Edges with lengths wi can be seen here as wi edges of length 1. We can see that
the problem remains the same (except now graph size can’t fit in memory, but
we’ll discuss this part later).

So, let’s solve the problem for tree with all edge lengths being 1.
From here and further in text a diameter will be called any pair of nodes

(u, v) for which dist(u, v) is maximum in this tree, and length of diameter will
be called it’s length.

Obviously, tree can have more than one diameter.
We can make an observation: let’s fix some diameter in tree; then all diam-

eters in the tree will go through the center of fixed diameter. More specifically,
center of each diameter in the tree is same node or edge.

This can be easily proven by contradiction, suppose centers of two diameters
don’t coincide, then their endpoints together will form a diameter of greater
length, which can’t happen.

From now, further in text this point will be refered as Center of tree, and
edge will be referred as Middle edge. If length of diameter is odd, then Center
will be any of endpoints of middle edge.

3 Subtask with K = 1

Then subtask with K = 1 can be solved by finding edge, for which decreasing
it’s length will decrease the length of diameter of tree. This can be transformed
into finding an edge through which all diameters pass.

Let’s see what happens if length of diameter is odd? Then all diameters go
through middle edge (all diameters in tree will contain both endpoints of this
edge), so decreasing it’s length will decrease tree’s diameter.

What if it’s even? Then we can decrease length of any edge incident to tree’s
center that belongs to any diameter. Let’s see why it works:

Let’s colour edges through which at least one diameter goes. If there are at
least 3 coloured edges incident to tree Center, then removing any won’t decrease
diameter. If there are two such, then removing any will decrease diameter. (note
that there can never be just one such if length is even).

This subtask may have many other solutions, for example, calculating for
each edge how many diameters go through it (Can be done with dfs in O(n)),
or others.
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4 Solution for bigger K

At this moment contestants should make some observations. Next I will describe
intended solution and intuition to it, then I will describe alternative approaches.

Let’s, firstly, solve an easier and seemingly unrelated problem:
*
Given a tree roted in vertex R, you are allowed to do next operation at most

K times, minimize tree’s depth.

1. Pick an edge in the tree that has non-zero length.

2. Decrease this edge’s length by 1.

Here we define depth(u) with tree rooted in R as max(dist(u, v)) over all
vertices v in u’s subtree, and depth of tree is equal to depth(R).

*
Solution to this sub-problem is very short and simple.
Firstly, it is obvious that all operations are commutative so their order

doesn’t matter.
We can see that applying operation on edge (u, v) (wlog u is parent of v)

will decrease value of dist(root, x) for each node x in v’s subtree.
Let’s also call an edge A ancestor of edge B if A lies on path from B to root.
Let’s define depth of an edge E connecting nodes u and v as depth(v) + 1 if

u is parent of v, and depth(u) + 1 otherwise.
Let’s take a look at operation order: say we have two edges A and B.
We can have two cases:
1) One edge is ancestor of another: (wlog A is ancestor of B) Then

applying operation on A before B will never lead to a worse result, since it will
affect value of dist(root, u) for more nodes, including all nodes that B would
affect.

2) Neither of edges is ancestor of another: Then applying operation
on one edge will never affect depth of another one, so applying it on edge with
greater depth will lead to at least not worse result.

Now we can observe that (1) also satisfies (2), because if A is ancestor of B
then depth(A) > depth(B).

This gives us simple optimal order of doing operations:

1. Sort edges in non-increasing order of their depths.

2. Apply operation on first K of them.

Let’s relate it to original problem.
First of all let’s rephrase our operation: we pick and edge E connecting

nodes u and v, and we ”collapse” the edge (we merge nodes u and v into one
new node).

Obviously there exists some optimal set of operations for given tree and K.
Let’s look at Tree Center after applying all operations in optimal way.
(Let’s call this node O).
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Claim: If we root initial tree in O, then the sequence that minimizes it’s
depth will also minimize it’s diameter.

Proof : First of all, for tree rooted in it’s Center, length of diameter will be
bounded by 2 · depth− 1 ≤ length ≤ 2 · depth, where depth is depth of the tree;
Also there is more general bound we’ll use: For any rooted tree diameter ≤
2 · depth; Let’s look at sequence1 of operations that minimizes diameter and
sequence2 that minimizes depth:

Lemma: depth2 is equal to depth1. Suppose depth2 < depth1. Then we have
simple inequality diameter2 ≤ 2 · depth2 < 2 · depth1− 1 ≤ diameter1. Which
results into diameter2 < diameter1 which can’t be true because sequence 1
minimizes diameter.

So we can see that apart from minimizing diameter, sequence 1 also mini-
mizes tree’s depth.

Next, let’s see another inequality: 2 ·depth1−1 ≤ diameter1 ≤ diameter2 ≤
2 · depth2;

Since depth1 and depth2 are equal, we can show that O will be Center of
tree after operations from sequence 2 as well. Proof: Note that from inequality
above diameter2 can be either 2 ·depth−1 or 2 ·depth. If diameter2 = 2 ·depth
then it is trivial to see that O is Center. If diameter2 = 2 · depth − 1 we can
show that O is Center.

A) Suppose diameter doesn’t go through O. Then diameter will belong to
one of O’s children’s subtrees. For one of endpoints of diameter dist(O,U) =
depth, and another endpoint belongs to same subtree. Since diameter doesn’t go
through O, biggest length of diameter we can have is 2 · (depth− 1) (otherwise
depth would be greater) which is smaller than 2 · depth− 1.

B) If diameter goes through O, then since for one of endpoints dist(O,U) =
depth, there exists other endpoint for which dist(O, V ) = depth − 1, so O is
Center.

Let’s look at all edges adjacent to O after applying all operations from
sequence 2. Since O is Center, diameter length will be equal to sum of depths
of two edges with biggest value of depth among ones adjacent to O. Let Q be
sorted sequence of edges generated by minimizing depth algorithm, then we can
see that diameter length is equal to depth(Qk+1) + depth(Qk+2) (even if edge
Qk+2 isn’t adjacent to Center, there will exist other edge with same depth that
will be adjacent to Center).

Let’s finally show that sequence2 minimizes tree diameter. Let’s root tree
in O and apply operations of sequence1. Remembering that O becomes Center,
diameter length will be equal to sum of depths of 2 edges with biggest value of
depth. So, if we calculate depth of each edge, we can see that diameter length
can never become smaller than sum K + 1-th and K + 2-th greatest depths.
Thus sequence2 produces smallest diameter we can achieve, which is exactly
the answer to problem.

***
So, now we know that there surely exists such node, such that if we root tree

in it and minimize it’s depth, it will minimize tree diameter as well. Moreover,
where Q is sequence of edges generated by minimizing depth algorithm, answer
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to problem will be depth(Qk+1) + depth(Qk+2) then. (assume depth(Qn) and
depth(Qn+1) both are 0)

We can try each node in tree as root and take minimum value of depth(Qk+1)+
depth(Qk+2) among all roots. This will give us correct value because:

1) If after K operations u becomes Center: then current diameter
simply is depth(Qk+1)+ depth(Qk+2). All nodes other than O can’t give better
answer since O becomes Center in optimal choice of operations.

2) If after K operations u doesn’t become Center: We can see that
Qk+1 will be parent edge ofQk+2, so actual diameter of tree will be< depth(Qk+1)+
depth(Qk+2), which means it’ll always give greater result than the optimal one.

So among all roots, we should take just minimum value of depth(Qk+1) +
depth(Qk+2) since among ones that satisfy (1) there will be O so eventually
we’ll find optimal diameter, and among ones that satisfy (2), value we’ll find
will be greater than optimal diameter.

So, naive solution we have now - fix each possible root, calculate depth(E)
for each edge in O(n), find Q in O(nlogn), take smallest sum of depth(Qk+1) +
depth(Qk+2) among all roots. Time complexity: O(n2 · log(n)).

5 O(m · log(m)) solution

Let m be sum of lengths of all edges in initial tree. m = n−1 for wi = 1
subtasks, and can be greater for weighted tree subtasks. Formally,
m =

∑
wi for each 1 ≤ i ≤ n− 1.

***
It would be great if we could find that optimal root somehow. Let’s take a

closer look at Q and how exactly it changes if we reroot tree.
Let tree be rooted now in U and there exists edge U − V . If we reroot tree

from U in V , for which edges does value of their depth change? It turns out
that while rerooting the tree, only depth of the edge U − V changes, and all
other edges’ depths remain same.

So, first way to solve problem in O(m·log(m)) is: fix arbitrary root, calculate
depths for each edge. Then we can apply rerooting technique and try to reroot
tree to each vertex possible, while supporting updating depth of edge we just
crossed. For each edge we can precalculate it’s depth with tree being rooted in
each of it’s endpoints in O(n) with a simple dfs. After updating depth, simply
find k + 1-th and k + 2-th greatest values, and update the answer (if needed).
This part could be done with a Segment Tree data structure.

Problem of this approach is that it depends on m and not n, so (with getting
first 3 subtasks) it would give contestant 70, or even 80 points if they would
transform each edge into wi edges of length 1, but not 100 points.

It turns out optimal root can be found without rerooting and without even
searching for it in code. Let’s root our tree in it’s Center and calculate all
depths of edges. Let’s see what happens now, if we reroot the tree ”further”
from center.

*
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For shortness, let’s call length of diameter D.
Suppose tree is rooted now in U and we reroot it to V , and U is closer to

Center than V . We can see that depth(Center) (with tree rooted in U) is at least
D/2 (since it is Center). The same way, depth(V ) (with tree rooted in U) is not
greater than D/2. So, if we reroot the tree, old value of depth(edge(U−V )) was
less than or equal to D/2 + 1. But new value becomes equal to depth(U) + 1
(since V is parent of U now). Since tree is rooted in V and U lies on path
from Center to V , then U is ancestor of Center, so depth(U) ≥ depth(Center)
(equality happens when U is Center itself).

So we have depthnew(U) ≥ D/2 ≥ depthold(V ) which means that depth(edge(U−
V )) never decreases when we reroot tree further from center, which means sum
of K +1-th and K +2-th greatest values of edges never decreases too. Thus we
reach smallest sum of depth(Qk+1) + depth(Qk+2) when tree is rooted in it’s
Center.

So our algorithm simplifies to: Finding tree’s Center, rooting tree in it,
finding sequence Q, taking depth(Qk+1) + depth(Qk+2).

This still works in O(m · log(m)), but already is way simpler.

6 What if length of edge can be greater than 1?

As it was said before, we can see edge of length wi as wi edges of length 1.
Problem is that if we build that explicitly, tree can have up to 2 · 109 edges,
which is, of course, too much. So we’ll store them normally, but imagine them
as set of wi edges of length 1.

Let’s see how exactly does edge U − V of length w contributes to Q? Wlog
U is parent of V . Then w edges of length 1 will have their depths equal to:
depth(V ) + 1, depth(V ) + 2, ... , depth(V ) + w .

So basically, one such edge U − V with length w and U being parent of V
adds to Q 1 instance of depth(V ) + i for each 1 ≤ i ≤ w.

In the end we will still have to find K + 1-th and K + 2-th greatest values.
Does that remind you of anything? What about Segment Tree with range
adding and finding K-th smallest/greatest element, which is pretty simple to
implement?

So, full solution to problem does the next:
1) Find tree Center. (note!) If there doesn’t exist such node that would

be Middle node of a diameter, artificially create it (by adding a new node on
middle edge).

2) Calculate depths of all nodes with dfs.
3) For each edge U − V (U is parent of V ) add 1 on range [depth(V ) +

1, depth(V ) + w] in segment tree.
4) Output sum of K + 1-th and K + 2-th greatest values in segment tree.
Final time complexity: O(n · log(m)).
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7 Alternative approaches.

There exist some other approaches for this problem, let’s discuss them in order.
*
- Guessing optimal strategy (unoptimal time complexity): When I

just came up with this problem I had no ideas of any polynomial solution for
it. (Initially problem had all weights == 1). Then I made assumption that
it’s always optimal to apply operation on edge which belongs to biggest
number of diameters i.e. edge through which most diameters go. Sadly
I failed to prove it, yet I later stress tested it against all possible solutions I had
and it showed that it’s correct.

This observation is pretty intuitive, so some participants can come up with
it during contest, having no other ideas of improving solution.

Implementing it, however, will give them not more than 40 points, because
the most optimal way this can be done is O(K ·N2), by doing K iterations of
next algorithm: go through each edge, run dfs from both it’s endpoints, then
number of diameters can be found in O(n) with 2-pointers or other ways.

*
- Extension of previous solution:
When I came up with this, I thought it will be the full solution. Yet, I

optimized it later, but some of participants can still come up with this:
If one observes that all diameters in tree go through it’s Center, then edge

belonging to most diameters will be incident to the Center.
Thus we can improve previous solution to O(K · N) one: do K iterations

of next algorithm - find Center (O(n)); root tree in it and find all endpoints of
diameters with a dfs in O(n); for each edge incident to center finding number
of diameters going through it simplifies to number of endpoints inside subtree
multiplied by number of endpoints outside the subtree (in case of even diameter
length), for odd length just one edge will be relevant.

There exists other solution with same complexity, which has more difficult
implementation but doesn’t require tree Center observation. Though, still, this
solution is based on observation that there exists at least one node in which all
diameters in tree intersect (not necessary just Center). It can also be proven by
induction, keeping the ”intersection” range of diameters and adding new ones
1 by 1, it can be shown that intersection is never empty.

If one can find this intersection point, then solution is same as above one:
root tree in this node, calculate number of diameters going through each edge
incident to root, except calculating this number won’t be as simple as in solution
above, still it’s doable in O(n).

Either of those solutions could give contestant up to 55 points.
*
- Next step of optimization of this greedy idea: Extending solution

with rooting tree in Center, one could observe the next property: Let’s (imagi-
narily) colour all edges that belong to at least one diameter. Firstly, if diameter
length is odd, then all diameters will go through middle edge, so in this case
we can always remove just it. Now we’ll always deal with even length diameter.

6



Let S be set of coloured edges incident to tree Center at some moment of time.
It will always be optimal to remove any edge from this set. Let’s show why this
works:

1) while size of S is greater than 2, diameter won’t change after operation.
It’s easy to see why.

2) When size of S is equal to 2, removing any of those 2 edges will decrease
diameter by 1.

3) When size of S is equal to 1, diameter length becomes odd (see why?), so
we’re ”forced” to remove that edge.

When S becomes empty, recalculate it again.
By just simulating the process we can get simple O(n2) solution. It can be

further optimized either maintaining priority queue of edges, or by calculating
depth for each edge and sorting list of edges, then applying operation on first
K (see why this works?) of them.

So we end up with another, though not proven, O(n · log(n)) solution, which
works for unweighted (i.e. wi = 1) tree.

*
- Another way to go from 70 to 100 points: Instead of using segment

tree, one could do binary search on biggest depth left in tree, though this one
may be tricky to implement, but works as well and doesn’t require additional
data structure for solution. I want to thank Nemanja Majski for pointing this
idea.

*
- Way to solve problem in O(K logK) without data structures: It

requires all observations needed for full solution, but instead of using segment
tree one can process operations explicitly, one by one in Dijkstra-like way with
priority queue. Possible there even exists way to do this in O(N logK) but I’m
not aware of it.

*
In the very end, I want to thank Alin Popescu and Nemanja Majski for their

help with process of proving, improving, and developing solution, and testing
the problem.
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