
EDITORIAL OF PROBLEM

BOUQUETS

Subtask 1

Let us consider a given order and denote by 𝑐𝑛𝑡 the number of flowers that can be used for it, and

by 𝑎𝑛𝑠 – the required number of flowers in each bouquet. We need to find the smallest number 𝑎𝑛𝑠
for which 𝐶𝑎𝑛𝑠

𝑐𝑛𝑡 ≥ 𝐾. If this inequality has no solution, the order cannot be fulfilled. The constraints

in this subtask are small enough that we can check all possible values for 𝑎𝑛𝑠 using the formula

𝐶𝑘
𝑛 = 𝑛!

𝑘!(𝑛−𝑘)! .

Complexity: 𝑂(𝑀 × 𝑁2).

Subtask 2

When calculating combinations using the standard formula, very large intermediate values arise.

For this reason, we will instead use the following recurrence relation:

𝐶𝑘
𝑛 = 𝐶𝑘−1

𝑛−1 + 𝐶𝑘
𝑛−1

In this way, we can construct Pascal’s Triangle and obtain all combinations that fit within a 64-bit

integer variable.

Complexity: 𝑂(𝑁2 + 𝑀 × 𝑁).

Subtask 3

Due to the larger constraints, standard integer variables cannot be used. Solving this subtask

requires only implementing the addition and comparison operations for big numbers.

Complexity: 𝑂((𝑁2 + 𝑀 × 𝑁) × 𝑙𝑜𝑔10𝐾).

Subtask 4

Amajor drawback of the previous solution is that it uses too much memory. To address this issue,

we can properly store all orders in advance and process them sorted by the number of all flowers that

can be used for them. This way, there is no need to store the entire Pascal’s triangle, and it is sufficient

to keep only one of its rows – the one needed for processing the current order. Additionally, we can

determine the number of flowers that can be used for a given order in constant time using a prefix

array.

Complexity: 𝑂(𝑀 × 𝑙𝑜𝑔2𝑀 + (𝑁2 + 𝑀 × 𝑁) × 𝑙𝑜𝑔10𝐾).

Subtask 5

One of the properties of Pascal’s triangle is that its rows are symmetric. We can consider only its

first half, which is non-decreasing. This allows us to optimize the process of finding the answer for

each order using binary search. Alternatively, we can apply the two pointers technique if, after sorting

the orders by the number of flowers that can be used for each of them, we also sort by 𝐾 in case of

equality.

Complexity when binary search is used: 𝑂((𝑁2 + 𝑀 × 𝑙𝑜𝑔2𝑁) × 𝑙𝑜𝑔10𝐾).

Complexity when pointers are used: 𝑂((𝑁2 + 𝑀 × 𝑙𝑜𝑔2𝑀) × 𝑙𝑜𝑔10𝐾).

1



Subtask 6

In this subtask, a single bouquet must be made for each order. An order can be fulfilled if the

shop has at least one type of flowers whose number of petals falls within the required interval.

Complexity: 𝑂(𝑁 + 𝑀).

Subtask 7

We should optimize the operations with big numbers in the solution of subtask 5. For this

purpose, we can represent the numbers in a numeral system with a base greater than 10. The author’s
implementation uses base 1018. In this way, resources are saved for 18 digits that fit into a single

variable.

Complexity: 𝑂((𝑁2 + 𝑀 × 𝑙𝑜𝑔2𝑁) × 𝑙𝑜𝑔𝑏𝑎𝑠𝑒𝐾) or 𝑂((𝑁2 + 𝑀 × 𝑙𝑜𝑔2𝑀) × 𝑙𝑜𝑔𝑏𝑎𝑠𝑒𝐾).

Author: Georgi Petkov

2


	EDITORIAL OF PROBLEMBOUQUETS
	Subtask 1
	Subtask 2
	Subtask 3
	Subtask 4
	Subtask 5
	Subtask 6
	Subtask 7


