
Soft drinks - solution

Atanas Dimitrov, Radoslav Dimitrov

Core view
It proves very useful to look at the problem geometrically. We can think of each drink with its
concentration of sugar 𝐴𝑖 and acids 𝐵𝑖 as a point 𝑃𝑖 = (𝐴𝑖, 𝐵𝑖) – from this point forward drink type
and point will be used interchangeably. The order of the points does not affect the queries.
Therefore, we can sort them in increasing order of 𝐴𝑖. Additionally, if we have multiple points with
the same 𝐴𝑖, we can discard all of them except the one with minimal 𝐵𝑖, since all of those points
will appear in the same set of queries and we can mix out those suboptimal points.

Thinking about the general problem statement, we can shift our focus from choosing the final drink
amounts (𝑉0, 𝑉1,…, 𝑉𝑁−1) of each drink type to instead choosing the per-liter amount of each drink
type, i.e. (̄𝑉0, ̄𝑉1,…, ̄𝑉𝑁−1), s.t. ∑𝑁−1

𝑖=0
̄𝑉𝑖 = 1, and then figuring out the maximum liters of this 1-

liter drink we can mix. Geometrically we can visualize this by picking a weighted average ̄𝑃 of the
points 𝑃𝑖 and then “projecting” it onto the rectangle with corners (0, 0) and 𝑀 = (𝑀𝐴,𝑀𝐵):

𝐴

𝐵

𝑃0

𝑃1 𝑃2

𝑃3

𝑃4

𝑀

̄𝑃

𝑃proj

Solution for 𝑁 = 2
We examine 3 different cases:

1. If none of the points fit in the interval (𝐿𝐴, 𝐵𝐴) the answer is trivially 0.

2. If only one of the points fits in the interval (𝐿𝐴, 𝐵𝐴), the answer is the amount of liters we can
pick from this point 𝑃𝑖 (taking special care of the cases 𝐴𝑖 = 0 and 𝐵𝑖 = 0): min(𝑀𝐴

𝐴𝑖
, 𝑀𝐵

𝐵𝑖
)

3. If both points fit in the interval (𝐿𝐴, 𝐵𝐴) we need to analyze a bit more careful:

First, notice that if 𝐴0 < 𝐴1 and 𝐵0 ≤ 𝐵1 we can discard point 1 as if there is an optimal solution
(𝑉0, 𝑉1), with 𝑉1 ≠ 0, we can replace it with (𝑉0 + 𝑉1, 0) which will either allow us to improve the
liters or keep them the same. We are now free to assume 𝐴0 < 𝐴1 and 𝐵0 > 𝐵1.

Second, since we only have 2 drinks to mix, their per-liter average will lie somewhere on the line
(𝑃0, 𝑃1). Notice that the optimal mixing will consist of either taking only one of the drinks or having
a final mix with exactly 𝑀𝐴 grams of sugar and 𝑀𝐵 grams of acids.

In conclusion, in the case of 𝑁 = 2 we either have to consider the 2 points(when taken alone) or the
point which lies on the ray (0, 0) → (𝑀𝐴,𝑀𝐵) on the line (𝐴0, 𝐵0) − (𝐴1, 𝐵1), which can be done
by ray-line intersection.

Solution 𝑂(𝑄𝑁2)
When the interval (𝐿𝐴, 𝑅𝐴) contains more than 2 points, we can prove the following claim – the
optimal solution consists of only taking one drink type or it consists of mixing exactly 2 different
drink types. Assume we pick more than 2 drink types to mix – there is some optimal
𝑉0, 𝑉1, 𝑉2,…, 𝑉𝑁−1. Again consider the concentration of sugar and acids per liter of the final drink
̄𝑉0, ̄𝑉1, ̄𝑉2,…, ̄𝑉𝑁−1, one can view this geometrically as taking a point in the convex hull formed by

the set of points {𝑃0, 𝑃1, 𝑃2,…, 𝑃𝑁−1}. Thus if we take the intersection of the ray going from (0, 0)
to 𝑃sum = (∑𝑁−1

𝑖=0
̄𝑉𝑖𝐴𝑖,∑

𝑁−1
𝑖=0

̄𝑉𝑖𝐵𝑖) and the convex hull – we can find another point(achieved by
mixing only 2 drink types) with lower concentrations of sugar and acids per liter, which can be then
used to improve this original solution ⇒ contradiction.

This gives the following 𝑂(𝑁2) algorithm for a single query:
• Consider each point and find the maximum liters of it we can mix.
• Consider each pair of points and find the maximum liters we can mix with exactly 𝑀𝐴 grams of

sugar and 𝑀𝐵 grams of acids.
• Take the maximum of those 𝑂(𝑁2) pairs and 𝑂(𝑁) single candidates.

Solution 𝑂(𝑄𝑁)
Optimizing the above algorithm comes down to the observation that the pairs we need to consider
are all consecutive points on the lower-left convex hull(LLCH) of the set of points
{𝑃0, 𝑃1, 𝑃2,…, 𝑃𝑁−1}. Since we already have the pairs sorted, we can find this LLCH in 𝑂(𝑁) time
in total.

Solution 𝑂(𝑄 log(𝑁)) for (𝐿𝐴, 𝑅𝐴) = (0, 109).
We can further optimize the solution for the case of a static set of points by noticing that mixing
exactly 𝑀𝐴 sugars and 𝑀𝐵 acids is not possible for all line segments of the convex hull which do
not cross the ray (0, 0) to (𝑀𝐴,𝑀𝐵), so there is only one “interesting” line segment in the LLCH.
We can find this line by keeping this LLCH in order of increasing 𝐴𝑖 and binary searching for the
first point that lies on the right side of the ray. The check can be done exclusively using integer
arithmetic by calculating cross-products.

The other part of the candidates consists of taking only a single drink type, but this also means
taking one of the constraints to be tight and we can thus consider only the point with minimum 𝐴𝑖
or minimum 𝐵𝑖, which also happen to be the first and last points in the LLCH.

The final number of candidates we need to consider comes out to 3 = 𝑂(1) and we have to search
for the line in 𝑂(log(𝑁)) time.

Solution 𝑂(𝑄
√
𝑁) with 𝑂(𝑁

√
𝑁) precompute

One idea for solving this problem for full points comes from the 𝑂(log(𝑁)) solution for fixed set of
points – we do not need to consider a lot of points to find the optimal solution.

Let us split the points in buckets of size 𝐾 = ⌊
√
𝑁⌋. The 𝑖-th bucket 𝑆 will contain the set of points

{𝑃𝑖𝐾 , 𝑃𝑖𝐾+1,…, 𝑃min((𝑖+1)𝐾−1,𝑁−1)}. Having these buckets we will solve a query (𝐿𝐴, 𝑅𝐴) by first
finding the interval of indices [𝑙, 𝑟], s.t. all 𝐴𝑖, for 𝑖 ∈ [𝑙, 𝑟] are in [𝐿𝐴, 𝑅𝐴] and [𝑠, 𝑒], s.t. all buckets
with indices ∈ [𝑠, 𝑒] are fully contained in [𝑙, 𝑟].

First note that if 𝑟 − 𝑙 + 1 ≤ 2
√
𝑁 we can build the whole LLCH in 𝑂(

√
𝑁) and use the linear

solution. In the case the points are too many to build the whole hull, we will consider the following
5 cases:

• Using the point with minimum 𝐴𝑖 – this is the point 𝑃𝑙.
• Using the point with minimum 𝐵𝑖 – for each bucket we have precomputed the minimum 𝐵𝑖 point

in it, we consider those 𝑂(
√
𝑁) points and the minimum 𝐵𝑖 point in the “leftovers” in the 2 ends

of the query not fully covered by some bucket.
• Using a pair of points 𝑖, 𝑗 with 𝑙 ≤ 𝑖 < 𝑠𝐾 and 𝑒𝐾 ≤ 𝑗 ≤ 𝑟 – we can solve this case by inserting

all 𝑂(
√
𝑁) points on the 2 ends in a LLCH. and finding the best pair there in 𝑂(log(𝑁)).

• Using a pair of points 𝑖, 𝑗 with 𝑠𝐾 ≤ 𝑖, 𝑗 ≤ 𝑟 – this is the hardest case and will be discussed how
to be solved in 𝑂(

√
𝑁) at the end.

• Using a pair of points 𝑖, 𝑗 with 𝑙 ≤ 𝑖, 𝑗 < 𝑒𝐾 – equivalent to the previous case and will be
discussed how to be solved in 𝑂(

√
𝑁) at the end.

We can thus compute the maximum across each of those cases, resulting in a 𝑂(
√
𝑁) time per

query.

To solve the hardest case, namely 𝑠𝐾 ≤ 𝑖, 𝑗 ≤ 𝑟 (the other follows by symmetry) we will
precompute EmptyTime𝑏0,𝑏1 for a pair of buckets 𝑏0 and 𝑏1 as follows – starting to fill a LLCH from
𝑃𝑏0𝐾 and iteratively adding to a LLCH points 𝑃𝑏0𝐾 ,…, 𝑃𝑁−1 what the index of the point from
bucket 𝑏1 that leaves last the LLCH is and what the index of the point that removes it is. This allows
us to keep a virtual version of the LLCH for the range [𝑠𝐾, 𝑟] by giving at least one point per bucket
or signalling that the bucket is empty at time 𝑟. We will use this information to find the first bucket
𝑏𝑟 that has at least one point to the right of the ray from (0, 0) to (𝑀𝐴,𝑀𝐵) and insert into a LLCH
this bucket, the last bucket before it that is non-empty and the points in [𝑒𝐾, 𝑟]. This LLCH is built
from ≤ 3𝐾 = 𝑂(

√
𝑁) points and we can query as usual for 𝑂(log(𝑁)) time.

Illustration of idea for the hardest case.
• We have query (𝑙, 𝑟) = (2, 12)
• 𝐾 = 3 and the bucket cutoffs are dashed
• The full LLCH for (𝐾, 𝑟) consists of 𝑃3, 𝑃4, 𝑃9, 𝑃12, but the virtual one consists only of 𝑃3, 𝑃9.

𝐴

𝐵

𝑃0

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃8

𝑃9

𝑃10

𝑃11

𝑃12

𝑃13

	Core view
	Solution for N = 2
	Solution O(Q N2)
	Solution O(Q N)
	Solution O(Q log(N)) for (LA, RA) = (0, 109).
	Solution O(Q N) with O(N N) precompute

