
Fight

Анализ

Под турнир се има предвид мелето.

Подзадача№0

Както винаги оставих подзадача с тестовите примери за обратна връзка от системата.

Подзадача№1

Тази подзадача ни кара да се питаме първият логичен въпрос, а именно – какво става с елементът

с най-голямо 𝐴? В случая той ще има и най-голямо 𝐵, откъдето всеки елемент който има различно 𝐴

или 𝐵 от него не може да го бие директно. Така може да видим, че всеки един елемент с 𝐴 равно

на максималното може да бие всеки друг в директен двубой, а всички останали не могат да спечелят

турнира, защото нито един от тях не може да победи максималните елементи. Така отговора е равен

на броят елементи с максимално 𝐴.

Постигната сложност: (𝑁)

AI имплементация: chatgpt_first_10p.cpp

Конструктивна интерпретация

В този анализ ще разгледаме две решения, едното което работи изцяло на база на свойствата на

турнира, което ще нарека Конструктивна интерпретация на задачата, и друго, което въвежда граф и

работи главно с него, което ще бъде ”Графовата интерпретация”.

Подзадачи№4,6

Следващия въпрос, който следва е защо максимумите (съответно в 𝐴 и в 𝐵) не печелят само

те винаги, а отговорът се намира в тестовия пример – може някой късметлия да намери поредица

от боеве с които побеждава по-силните от него, което разчита на фактът, че ще има достатъчно

участници, които са слаби в единия показател и силни в другия.

Едно от най-естествените неща, които правим в задача в която се интересуваме под една или друга

форма от сравнения между елементи е да ги сортираме. Тъй като тук не може да сортираме двойките

спрямо и двата им критерия (т.е. (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) ≤ ⋯ ≤ (𝐴𝑛, 𝐵𝑛)), ние бихме могли да го направим

само по единия. Заради това от тук насетне в анализа ще приемем, че сме сортирали двойките така че

𝐴1 ≥ 𝐴2 ≥ ⋯ ≥ 𝐴𝑛.

Наблюдение: ако участник номер 𝑖 може да спечели турнира, то всички с номера ≤ 𝑖 могат. Това

е така, защото за всеки 𝑗 < 𝑖 може променим начинът по който се водят боевете до победа на 𝑖-тия

участник по такъв начин, че 𝑗-тия участник да спечели. Това ще го направим по следния начин – в

сценария за победа на 𝑖-тия човек ще има единствен бой при който 𝑗-тия ще отпадне. Тогава ние няма

да проведем този двубой, като ще проведем останалите битки от турнира както е по сценария. Тогава,

след тяхното провеждане ще останат само 𝑖-тия и 𝑗-тия участник, където ще проведем битка между тях,

от която 𝑗 може да излезне победител, защото 𝐴𝑗 ≥ 𝐴𝑖.

Като следствие, ние можем вместо да разгледаме 2𝑁 възможни множества от победители, ние ще

трябва да разгледаме само 𝑁, защото като сортираме винаги отговорът ще бъде всички с номера≤ 𝑀,

и губещи всички с 𝑖 > 𝑀, за някое 1 ≤ 𝑀 ≤ 𝑁.

Следва натуралното продължение на нашите мисли – да опитаме да преценим за всяка една

позиция е разделителя между печеливши и губещим, иначе казано да намерим горното𝑀.

1



Fight

Една добра стратегия за да намерим𝑀 е да се питаме следния въпрос – какви свойства иматази

позиция?. Едно от тях го открихме в първата подзадача (където 𝑀 беше просто първата позиция след

максималните елементи) – няма елемент след𝑀, който да може да бие елемент преди𝑀, иначе и той

ще бъде победител. Така, ние сме сигурни, че ако𝑀 е разделителят, то няма елемент след него, който

да бие елемент преди него.

Така вече имаме два вида позициии – една, която разделя печеливши от губещи, и други, такива,

че за всяка една от тях 𝐾, всички елементи преди 𝐾 не могат да бъдат победени в двубой от елемент

след 𝐾. Вторият вид позиции ще ги наричам шлюзове, защото ако начертаете двойките на декартова

координатна система ще забележите, че при такива позиции може да преместите 𝑂 в такава точка, че

всички в 𝐼𝐼𝐼 квадрант са в позиция> 𝐾, а всички в квадрант sa в позиция≤ 𝐾. Генерално е добра идея

да се пробваме да си представяме информацията геометрично.

Естествено е да пробваме да намерим разделителят по позициите на шлюзовете, защото това

да проверим дали една позиция е шлюз изглежда по-лесно. Естествено, ако една позиция е шлюз не

е задължително да бъде разделител, най-малкото 𝑁 е шлюз. От там може да се питаме следното –

възможно ли е позиция преди разделителя да бъде шлюз? Ако това е вярно, то ще има печеливш

елемент, за който няма поредица от боеве, с които да успява да победи някой преди шлюза, откъдето

няма да е печеливш – противоречие. Така може да видим, че разделителят е именно тозишлюз, който

се намира най-рано в позицията (няма нито един шлюз преди него, а той самият се пада шлюз). Така

сведохме задачата да намерим най-малката позиция, която ешлюз.

За да намерим това, трябва да се върнем от Страната на чудесата, в която мислехме за

абстрактни идеи, и да се върнем в постановката на задачата. Една позиция 𝐾 е щлюз, ако за всяка

двойка елементи (𝑖, 𝑗)|1 ≤ 𝑖 ≤ 𝐾 < 𝑗 ≤ 𝑁 е изпълнено:

• 𝐴𝑖 > 𝐴𝑗

• 𝐵𝑖 > 𝐵𝑗

Тоест, 𝑗 не може да бие 𝑖. Тъй като 𝐴𝑖 ≥ 𝐴𝑖+1 ≥ ⋯ ≥ 𝐴𝑗, ние на практика трябва да сме сигурни,

че не може да изберем 𝐴𝑖 = 𝐴𝑗. Това би било възможно тогава и само тогава, когато 𝐴𝐾 = 𝐴𝐾+1. Така

една позиция за да ешлюз задължително трябва 𝐴𝐾 > 𝐴𝐾+1.

Другото условие е еквивалентно на 𝑚𝑖𝑛(𝐵1, 𝐵2, ⋯ , 𝐵𝐾) > 𝑚𝑎𝑥(𝐵𝐾+1, 𝐵𝐾+2, ⋯ , 𝐵𝑁). За

линейно време, може с две обхождания на намерим префиксните минимуми 𝑝𝑟𝑒𝑓𝑀𝐼𝑁𝑋 =

𝑚𝑖𝑛(𝐵1, 𝐵2, ⋯ , 𝐵𝑋) = 𝑚𝑖𝑛(𝑝𝑟𝑒𝑓𝑀𝐼𝑁𝑋−1, 𝐵𝑋) и суфиксните максове 𝑠𝑢𝑓𝑓𝑀𝐴𝑋𝑋 =

𝑚𝑎𝑥(𝐵𝑋, 𝐵𝑋+1, ⋯ , 𝐵𝑁) = 𝑚𝑎𝑥(𝐵𝑋, 𝑠𝑢𝑓𝑓𝑀𝐴𝑋𝑋+1), като впоследствие проверим дали условието е

вярно през 𝑝𝑟𝑒𝑓𝑀𝐼𝑁𝐾 > 𝑠𝑢𝑓𝑓𝑀𝐴𝑋𝐾+1.

С това намираме първата позиция, която ешлюз и сме готови.

Постигната сложност: (𝑁𝑙𝑜𝑔2𝑁)

Имплементация: author_100p.cpp

2



Fight

Графова интерпретация

Нека построим насочен граф, в който има 𝑂(𝑁2) ребра, като има ребро от 𝑢 към 𝑣, ако 𝑢 може да

бие 𝑣.

Тогава, един връх може да е победител в турнира тогава и само тогава, когато от него има път към

всички останали върхове.

Доказателството на това е по-тежко отколкото е самата идея. Това условие е необходимо, защото

в противен случай ще има връх който не може да отпадне от турнира. Това условие е достатъчно,

защото ако е изпълнено има начин, по който да организираме боевете, така че този връх да спечели.

Първото твърдениеможеда седокаже като се разгледат битките отзаднапреди се покаже, че условието

е изпълнено по индукция. Второто – като битките се проведат в обратен DFS ред. Детайлите по

доказателството са оставени за упражнение на читателя.

От тук следват няколко решения

Подзадача№3

Директна проверка с 𝐷𝐹𝑆 за всеки отделен връх дали достига всички останали.

Постигната сложност: 𝑂(𝑁3)

AI имплементация: chatgpt_dfs_20p.cpp,

Подзадача№4

Когато се разглежда свързаност в насочен граф е много логично да се провери дали силно

свързаните компоненти на графа са релевантни.

Нека намерим силно свързаните компоненти за𝑂(𝑁+𝑀) = 𝑂(𝑁2). Тогава, за да може един връх

да стигне всички останали, то той задължително трябва да бъде в 𝑖𝑛 връх (т.е. в такъв в който не влизат

ребра), иначе самият връх няма да може да достигне върхове от 𝑖𝑛 връх. Може да забележим, че това

е достатъчно, защото в графа има само един 𝑖𝑛 връх, защото между всяка двойка върхове има поне

едно ребро (П.С. ако има≥ 2 𝑖𝑛 върха, то ще може да построим ребро между два от тях, противоречие)

(П.П.С. генерално за да може да достигнем до всички останали върхове, то трябва да има точно 1 𝑖𝑛

връх) (П.П.П.С. в този граф важи по-силното условие, че кондензираният𝐷𝐴𝐺 е пръчка). Така, намираме

кой е върхът в кондензирания граф, към който не влизат ребра (а такъв има защото е𝐷𝐴𝐺), с което сме

готови.

Постигната сложност: 𝑂(𝑁2)

AI имплементация: chatgpt_scc_explitic_50p.cpp, chatgpt_scc_implicit_50p.cpp

Подзадача№6

Може да забележим, че горният алгоритъм е неефективен. Това е така, защото във всеки връх

се влиза точно веднъж от едно 𝐷𝐹𝑆, с което ако успеем по добър начин да пропускаме ребрата към

върховете, които вече сме посетили с 𝐷𝐹𝑆-a, ние бихме имали 𝑂(𝑁) алгоритъм.

Нека за момент се върнем към началната задача и видим към кои върхове има ребра връх,

съответстващ на човек с коефициенти (𝑎, 𝑏). То ребрата биха били към всички върхове, които (𝑎, 𝑏)

бие, т.е. за (𝑐, 𝑑), 𝑐 ≤ 𝑎 или 𝑑 ≤ 𝑏.

Тогава, на практика, ние правим следното със всеки един от върховте – за текущ връх (𝑥, 𝑦),

гледаме кои са необходените върхове с 𝑥 ≤ 𝑎 и ги обхождаме, след това гледаме всички върхове с

3

https://cp-algorithms.com/graph/strongly-connected-components.html


Fight

𝑦 ≤ 𝑏, и съответно и тях също ги обхождаме. Така може да видим следното свойство – всички върхове,

които чакат да бъдат извикани за 𝐷𝐹𝑆 от техен съсед са с 𝑎 ≤ 𝑋 или 𝑏 ≤ 𝑌 за някакви 𝑋 и 𝑌.

Така, във всеки един момент, върховете, които бихме искали да обходим с 𝐷𝐹𝑆-а, щяха да са

всички с 𝑎 ≤ 𝐴 и 𝑏 ≤ 𝐵. От тук може да ни хрумне идеята да правим следното – построяваме два

сортирани масива на играчите в турнира, единия по координатата 𝐴, другия по координатата 𝐵, като

поддържаме две показалки, една за масивът 𝐴, една за 𝐵, с които отчитаме докъде сме обходили

върховете, като за да обходим всички с 𝑎 ≤ 𝐴, 𝑏 ≤ 𝐵, бутаме показалките докато не стигнем на върхове,

които текущия не побеждава по съответния критерии.

Единствено трябва да сме внимателни с показалките, защото извикване на 𝐷𝐹𝑆 на връх, към

който имаме ребро може да им премести позицията в двата масива. Така в крайна сметка ще

имаме алгоритъм, който има подобна имплементация на Алгоритъма на Диниц за намиране

на максимален поток. Алтернативно, може да имплементираме алгоритъма за силно свързани

компоненти чрез BFS.

Постигната сложност: 𝑂(𝑁𝑙𝑜𝑔2𝑁)

AI имплементация: chatgpt_scc_dfs_100p.cpp, chatgpt_scc_bfs_100p.cpp

За любопитните

Идеите в тази задача се разширяват и към𝐾 измерен вид на задачата (вместо 2) – конструктивната

идея пак може да проверява дали някой вляво пада от някой вдясно, ако сме ги сортирали по която и

да е координата, като отново ще пазим масив𝑚𝑖𝑛𝑃𝑟𝑒𝑓 и𝑚𝑎𝑥𝑆𝑢𝑓𝑓 за всяка координата, различна от

тази по която сме ги сортирали, а в графовата ще пазим 𝐾 показалки вместо 2.

Автор: Борис Михов

4


	Анализ
	Подзадача №0
	Подзадача №1
	Конструктивна интерпретация
	Подзадачи №4,6
	Графова интерпретация
	Подзадача №3
	Подзадача №4
	Подзадача №6
	За любопитните


