
Анализ на задача transport

Тагове: дърво, броене на възможности, динамично програмиране

Спирките и пътната мрежа в Олимпово образуват ориентирано дърво с корен 1. В повечето

задачи дървета са неориентирани или има корен и насочеността става имплицитно от връх ”на-

долу”. Тук дървото е ориентирано главно за да може естествено пътищата, които разглеждаме

от връх до наследник, да са единствените възможни. В анализа вместо спирки, ще използваме

върхове. Важно е да обърнем внимание, че правим покритие на върховете на дървото, а не на

ребрата (в общия случай има разлика в броя), което е видно и от примера. Конкретно за подхо-

дите разглеждани в решенията няма голяма значение.

Решение на първа подзадача – 7 точки

Подзадачата е предвидена за най-директното решение с пълно изчерпване. Разглеждаме

всяко възможно подмножество на дадените линии. За дадено подмножество маркираме всички

върхове от съответните линии и проверяваме дали се покриват всички върхове.

Сложност: 𝑂(2𝐾𝐾𝑁).

Решение на втора подзадача – 13 точки

Можем малко да оптимизираме пълното изчерпване с по-бърза проверка. Нека предвари-

телно за всеки връх намерим множеството от линии, които го покриват. Ако запазим тази ин-

формация в битова маска, то проверката дали подмножество от линии покрива всички върхове

може да стане с побитово ”и” между всяка маска на връх и текущата маска на разглежданите

линии. Интересен е въпросът дали можем да се справим и по-добре – да правим проверката с

по-добра сложност от 𝑂(𝑁), но на пръв поглед няма добър начин.

Сложност: 𝑂(2𝐾𝑁).

Решение на трета подзадача – 11 точки (=0+0+11)

Това е първата подзадача от поредицата, където дървото е пръчка и то е поредицата

1 → 2 → … → 𝑁, т.е. може да си мислим, че имаме масив, който искаме да покриваме с

интервали. Ще опишем подход, който не може да се обобщи за дърво (разбира се пълното ре-

шение работи и тук, но без особено подобрение). Нека смятаме стандартното динамично 𝑑𝑝[𝑖] –
брой начини да покрием точно префикса на подмасива от 1 до 𝑖 (без да излизаме надясно). Лес-
но се вижда, че трябва да използваме поне един интервал, който завършва в 𝑖. Удобният начин
за всички решения на тази задача е като сме фиксирали даден интервал (линия), да разгледаме

два варианта – той е необходим за покритието (т.е. без него не е пълно) или просто се добавя

към вече валидно покритие. Оказва се сравнително неприятно извеждането на рекурентна за-

висимост. Нека сме фиксирали текущ интервал [𝑙, 𝑖] и искаме да преброим в колко покрития той

е необходим. Тогава можем да считаме, че преди да го добавим, сме имали предишно покритие

на префикса от 1 до 𝑝 (където 𝑝 е между 𝑙 − 1 и 𝑖 − 1) и като го добавим вече покриваме всичко

до 𝑖. Трябва да отчетем и още възможности, а именно може да има допълнителни интервали

след 𝑝, които не допринасят с нищо, но трябва да ги броим. За да не почнем да броим някои

възможности по няколко пъти, то трябва тези интервали да започват от 𝑝+2 нататък, за да няма
по-голяма покрита част от префикса до 𝑝 преди добавянето на текущия интервал.

В тази подзадача е предвидено най-директната имплементация на подобно динамично. Не-

ка обобщим смятането на 𝑑𝑝[𝑖]. За всяко 𝑖 разглеждаме интервалите, които завършват в 𝑖, като
ги фиксираме един по един. В началото отчитаме възможностите съответния интервал [𝑙, 𝑖] да
не е съществен за покритието до 𝑖, като просто удвояваме досегашната стойност на 𝑑𝑝[𝑖] (към
всяка стара възможност можем да добавим текущия интервал, като така получаваме още толко-

1 / 3



ва покрития). След това обхождаме всички възможни стойности на 𝑝 от 𝑙 − 1 до 𝑖 − 1 за старото
покритие преди новия интервал. За всяко 𝑝 преброяваме (с обхождане) всички по-малки интер-
вали, които можем да ползваме допълнително – тези с краища от 𝑝 + 2 до 𝑖 (за тези с десни

краища 𝑖 трябва да ползваме само предишните срещнати в обхождането на интервалите). Ако
те са 𝑐𝑛𝑡 на брой, то възможности за фиксираното 𝑝 са 𝑑𝑝[𝑝] × 2𝑐𝑛𝑡, които трябва да добавим

към 𝑑𝑝[𝑖].

Сложност: 𝑂(𝐾𝑁𝐾).

Решение на четвърта подзадача – 23 точки (=0+0+11+12)

Правим директна оптимизация на предния подход, като с прекъмпют предварително

преброяваме всички интервали с краища между две стойности. Така за смятането на 𝑑𝑝[𝑖] и
фиксирано 𝑝 единствено ни трябва броя интервали от прекъмпюта с краища между 𝑝 + 2 и

𝑖−1. Няма нужда до 𝑖, защото можем да сортираме текущите интервали по нарастващ ляв край

и така преди текущия интервал в обхождането има само по-широки или със същата дължина

интервали.

Сложност: 𝑂(𝐾𝑁) с предварителен count sort на левите краища на интервалите или

𝑂(𝐾𝑁 + 𝐾 log𝐾).

Решение на пета подзадача – 36 точки (=0+0+11+12+13)

Можем да забележим, че бройките интервали, които използваме при смятането на фикси-

рано 𝑑𝑝[𝑖], са само за десни краища до 𝑖 − 1. Затова преди да смятаме самото динамично, ще

направим още един прекъмпют за съответните суми при всяка възможна граница за ляв край.

Така оптимизираме изцяло вътрешния цикъл до константа. Възможно е допълнително да опти-

мизираме и второто предпроцесване и така да паднем под квадратична сложност, но това няма

смисъл в тази задача. Важно е да се отбележи, че в тази подзадача трябва да правим първото

предпроцесване със сложност 𝑂(𝑁2), докато преди можеше и със сложност 𝑂(𝑁𝐾).

Сложност: 𝑂(𝑁2 + 𝐾) с предварителен count sort на левите краища на интервалите или
𝑂(𝑁2 + 𝐾 log𝐾).

Решение на шеста подзадача – 11 точки (=0+0+0+0+0+11)

TBD...

Сложност: 𝑂(𝑁 + 𝐾).

Решение на седма подзадача – 54 точки (=0+7+6+11+0+11+19)

TBD...

Сложност: 𝑂(𝑁3 + 𝐾) с предварителен count sort на началните краища на пътищата или
𝑂(𝑁3 + 𝐾 log𝐾).

Пълно решение – 100 точки

TBD...

Сложност: 𝑂(𝑁2 + 𝐾) с предварителен count sort на началните краища на пътищата или
𝑂(𝑁2 + 𝐾 log𝐾).

2 / 3



Началната версия на задачата нямаше това изкуствено ограничение за пътищата да са само

от връх до наследник. Но се оказва, че тя е значително по-трудна и няма намерено решение

засега. Също е интересен въпросът дали има решение с по-добра сложност на задачата. Поради

трудностите да направим по-добро от квадратично решение за пръчка, вероятно няма по-добро

в общия случай на дърво.

Автор: Илиян Йорданов

3 / 3


	Анализ на задача transport
	Решение на първа подзадача – 7 точки
	Решение на втора подзадача – 13 точки
	Решение на трета подзадача – 11 точки (=0+0+11)
	Решение на четвърта подзадача – 23 точки (=0+0+11+12)
	Решение на пета подзадача – 36 точки (=0+0+11+12+13)
	Решение на шеста подзадача – 11 точки (=0+0+0+0+0+11)
	Решение на седма подзадача – 54 точки (=0+7+6+11+0+11+19)
	Пълно решение – 100 точки


