
К-то – решение

Атанас Димитров

Подзадача 1
Ще наричаме елемент важен в сегашния момент, ако той е един от елементите на позиции
1, 1 + 𝑘, 1 + 2𝑘,…, т.е. задачата изисква намирането на сумата на важните елементи.

Първата подзадача изисква директна реализация на условието на задачата. Ще поддържаме
масив, в които ще добавяме 𝑎𝑖 на всяка стъпка и ще сортираме наново. След всяко добавяне
и сортиране, можем да обходим важните елементи и да намерим тяхната сума.

Общата сложност е 𝑂(𝑛2 log(𝑛)).

Подзадача 2
Можем да съобразим факта, че ако 𝑘 = 𝑛, то 𝑛-красотата на мултимножеството е равна на
най-малкият му елемент. Тогава, за решаване на задачата, можем да държим
мултимножеството в приоритетна опашка, която да “питаме” за най-малкия вече добавен
елемент.

Общата сложност е 𝑂(𝑛 log(𝑛)).

Подзадача 3
Ще разгледаме по-генерално решение, което решава задачата ефективно за 𝑘 ≤

√
𝑛.

Нека започнем като сортираме всички числа, които ще присъстват в мултимножеството в
края. Ще кръстим тази сортировка 𝑏 и ще я разделим на 𝑂(

√
𝑛) с приблизително равни

размери, като 𝑖-тия “бъкет” отговаря на интервала [𝑙𝑖, 𝑟𝑖].

“Бъкетите” ще използваме, за да поддържаме 𝑘-красотата на мултимножеството бързо.
Можем да забележим, че за да определим кои са важните елементи в даден момент във
всеки “бъкет” ни е единствено нужно да знаем броя на добавените елементи в
мултимножеството в “бъкетите” вляво и в частност остатъка на този брой при деление на 𝑘.
Допълнително ако даден “бъкет” не се променя, то сумата на важните елементи зависи
единствено от този предишен остатък.

Така можем да достигнем до следното решение:

Когато добавяме нов елемент, който принадлежи в “бъкет” 𝑖, смятаме за всеки възможен
предишен остатък, колко би била сумата и колко биха били важните елементи, ако
започвахме от този остатък. Тъй като всеки елемент в даден “бъкет” може да е важен само
по един начин(за фиксираното 𝑘), то тази стъпка може да бъде реализирана във време
𝑂(𝑘) = 𝑂(

√
𝑛).

Когато искаме да разберем сегашната 𝑘-красота, започваме да разглеждаме “бъкетите”
последователно започвайки от 0. Ще започнем от предишен остатък 0(защото няма
предишни “бъкети”) и ще го променяме със съответния брой важни елементи, които
срещаме в този “бъкет”. Имайки предишния остатък за всеки “бъкет”, можем лесно да
намерим 𝑘-красотата като сумираме преизчислените стойности. Тази стъпка може да бъде
реализирана в 𝑂(

√
𝑛).

Общата сложност е 𝑂(𝑛
√
𝑛).



Довършване на цялата задача
За довършване на задачата трябва да се справим единствено със случаят 𝑘 >

√
𝑛.

Нека забележим проблема с миналото решение – ако 𝑘 >
√
𝑛, то остатъците които трябва да

разглеждаме стават много повече и наивното пресмятане става неефективно. Въпреки това,
можем с лека модификация да се справим с този проблем – тъй като 𝑘 е голямо, най-
големия брой важни елементи е 𝑂(𝑛𝑘) = 𝑂(

√
𝑛). Допълнително е важно да се отбележи, че

ако 𝑘 >
√
𝑛, то във всеки “бъкет” ще има най-много по един важен елемент.

Тогава ако за всеки “бъкет” пазим в масив с динамичен размер(например std::vector) всички
добавени елементи, можем да обиколим “бъкетите” поддържайки предишния остатък както
в миналата подзадача и ако се налага да прибавяме единствения важен елемент в този
“бъкет”, като пресметнем индекса му.

Общата сложност е 𝑂(𝑛(𝑛𝑘)) = 𝑂(𝑛
√
𝑛), от което следва че цялата задача е решима в

𝑂(𝑛
√
𝑛).


	Подзадача 1
	Подзадача 2
	Подзадача 3
	Довършване на цялата задача

