

spiral123 - solution

Authors Szabó Zoltan,

Gr. Şc. "Petru Maior" Reghin Adrian Panaete,

"A.T. Laurian" National College, Botoşani.

Solution for at most 40 points

The problem can be solved with backtracking (recursive or iterative), the matrix will be completed in spiral, for each step we have 2 numbers for validation: the number that follows from the 1-2-3 sequence (depending on what was used the last time) and 0. If we make a diagonal, then we change the direction. At each change of direction a row or a column is already completed, so we can make partial validations in order to improve the algorithm. When we find the first solution, we print and stop the program.

0	1	0	2	3
0	2	3	0	1
1	3	0	0	2
З	0	2	1	0
2	0	1	3	0

Solution for 100 points

We pre-process the initial squares for n = 5, 6, 7, 8, 9, 10 (manual or backtracking). For n>10 the solution is obtained from the $(n-6) \times (n-6)$ spiral123 and a 6 x 6 spiral123 segmented in four 3x3 sub-matrix as in the image bellow. With these 4 sub-matrix will be completed the four corners of $(n-6) \times (n-6)$ spiral123 and we have the required $n \times n$ spiral123.

1	2	0	3	0	0
3	0	1	0	2	0
0	0	0	2	3	1
0	1	3	0	0	2
0	3	2	1	0	0
2	0	0	0	1	3

This way we make an 11x11 spiral123.

1	2	0						3	0	0
3	0	1						0	2	0
0	0	0						2	3	1
			0	1	0	2	3			
			0	2	3	0	1			
			1	3	0	0	2			
			3	0	2	1	0			
			2	0	1	3	0			

0	1	3			0	0	2
0	3	2			1	0	0
2	0	0			0	1	3

Remarks: We can always build a nxn spiral123, if $n \ge 5$.