
Solution for Fish

Observe that the order in which the fish eat each other is irrelevant. All that matters is whether the jewels of a given set of 
fish can be "united" into one fish (through the eating process described in the problem statement). We can arrive at the 
following lemma:

Lemma 1
The jewels that you get might be those of a given set of fish X if and only if the longest fish in X is at least twice as long as 
the second longest fish in X.
Proof
If the longest fish in X cannot eat the second longest, their jewels can never be united unless a fish not in X is involved. If 
the longest fish is at least twice as long as the second longest, then the longest one can eat everyone else in X successively.

The tricky part of this problem is to avoid counting some possible combination of jewels more than once. One way to avoid 
this is to map every possible combination of jewels to the longest fish that can have that combination in its stomach. We 
then attempt to count, for each fish, the number of combinations mapped to it.

Note: For simplicity we will say that a fish, which was originally given a jewel of kind X, is itself "a fish of kind X".

Lemma 2
Unless a fish is the longest one of its kind, it will have no combinations mapped to it.
Proof
If we have a fish A of kind J and a longer fish B also of kind J, then whatever can be eaten by A can also be eaten by B. So 
any jewel set that's mapped to A can also involve the longer fish B instead of A, which is a contradiction with the mapping 
method defined above.

Lemma 3
If the longest fish A of kind J1 can eat N fish of kind J1 and another fish B of kind J2 can eat more than N fish of kind J1, then 
no combinations that contain any jewel J2 would be mapped to the longest fish of kind J1. (Observe that in such a case the 
fish B must necessarily be longer than the fish A.)
Proof
This is a similar case to the one above. Any such set that's mapped to the longest fish of kind J1 can also be found in the 
stomach of the longer fish of kind J2, leading to another contradiction.

Lemma 4
If the longest fish of kind J1 can eat N fish of kind J1 and another longer fish of kind J2 can also eat N, but not N+1 fish of 
kind J1, then the only combinations that can potentially be mapped to the longest fish of kind J1 would be ones which either 
have N+1 jewels J1 or no jewels J2.
Proof
Again, using the superset principle we find out that if a combination has at most N jewels of kind J1 and at least one jewel of 
kind J2, then it can be found in the stomach of the longer fish of kind J2 and thus cannot be mapped to a fish of kind J1.

Knowing this, we can build an algorithm to tell us which combinations are mapped to a given fish.

Note: For simplicity we will denote by E(J1, J2) the number of fish of kind J2 that can be eaten by the longest fish of kind J1.

Following lemma 2, we're only interested in the longest fish of their respective kind. For each such fish F1 of kind J1, we 
count two types of combinations that are mapped to it. First, combinations that have the maximum number of jewels of kind 
J1 (which is E(J1, J1) plus one). These are called the "full" combinations. Second, all other combinations mapped to F1. These 
are called the "partial" combinations.

Now, for every other kind J2, with longest fish F2, we count how many jewels of kind J2 can be part of a "full" or a "partial" 
combination mapped to F1. The above lemmas give rise to three scenarios:

* If E(J2, J1) is more than E(J1, J1) + 1, meaning that F2 can eat more fish of kind J1 than F1, then no jewels of kind J2 can be 
part of any combination mapped to F1.

* If F2 is longer than F1, but doesn't fall into the above category, there can be no jewels of kind J2 in the "partial" category of 



F1, but there can be anywhere between 0 and E(J1, J2) jewels in the "full" category.

* If F2 is shorter than F1, then any number between 0 and E(J1, J2) of fish of kind J2 can participate in either "full" or "partial" 
combinations of F1.

Except for J1, the number of jewels of any two colors are independent of each other (i.e., the first count doesn't influence the 
feasibility of the second count in any way and vice versa).

A naïve implementation of this algorithm gives O(K*F) running time since for each longest fish of its kind, we look through 
all other fish and determine the E values. This should be sufficient for 56 points.

We can improve the naïve implementation if we realize that we need only one loop over all the individual fish, as long as 
the fish are sorted by length. Then we can go from smallest to longest and count how many fish of each kind we have seen 
so far. We will use H(JX) to denote how many fish of kind JX we have seen. Then when we reach the largest fish that can be 
eaten by a fish of kind J, we have the values for E(J, JX) in the current values of H(JX). Implementing this properly yields a 
O(F*log F + K2) algorithm with the O(F*log F) bottleneck being the sorting of the F fish and the O(K2) bottleneck being the 
evaluation of the products of the E numbers for each jewel kind. This solution is sufficient for 70~75 points.

We now work towards an O(F*log F) solution, which gets 100 points for this problem. The key observation here is that if 
we have the kinds sorted by the length of their respective longest fish, when we compute the number of combinations 
mapped to a given kind J1, all we do is adding together a few numbers, each of which is a product of a some consecutive 
E(J1,JX) numbers (where "consecutive" refers to JX).

This means that we can achieve an O(F*log F) solution by keeping the array H(JX) (which at given times becomes E(J1, JX) 
for each kind J1) in a data structure that allows us to modify the array in O(log F) time and to extract the product of a 
continuous section of the array in O(log F) time as well. This can be done using a binary tree data structure with the leaves 
of the tree storing the H(JX) numbers and each node in the tree storing the product of the numbers in its sub-tree. A primitive 
illustration of this (with the leaves on top) would be as follows:

Note: [a, b] indicates that the node is keeping the product of H(a), H(a+1), H(a+2), …, H(b).

[1,1], [2,2], [3,3], …
[1,2], [3,4], [5,6]...
[1,4], [5,8], [9,12]...
[1,8], [9,16], [17,24]...
...
[1,2k], [2k+1,2*2k], [2*2k+1,3*2k]...

Clearly each change in the array affects the value stored in O(log F) of these nodes, hence any updates to the data structure 
can be achieved in O(log F) time by combining the values of the node's children in every affected node, going from the 
affected leaf to the root. It can also be shown that any interval of the array can be decomposed into at most 2*log F of these 
intervals, so the product of values in any interval can be calculated in O(log F) time as well.

Final Note: The author also developed an extended version of this problem in which you catch 2 fish, rather than just 1, and 
the jewels from the two fish are counted together. It is also doable in polynomial time, although it is much more 
complicated. If you are enthusiastic about solving this version, you should feel free to send your solutions to 
Velin.Tzanov@deshaw.com.


