
Solution for Game

This is quite obviously a task where dynamic programming shall be used – there are exponentially many ways the game can 
be played, but only polynomially many states in which the game can be. More precisely, at any moment the current state of 
the game is a contiguous subsequence of the original sequence of cities. In other words, each state can be uniquely 
described by the smallest index A of a city you have, and the smallest index B>A of a city you don't have. We will denote 
the state represented by A and B as [A,B).

Your goal at any moment is the same: maximize your profit in the game played from the current state. Let SA,B be the sum of 
profits for cities in [A,B) and PA,B be the best profit you can get from the game played on [A,B). In our solution, we will 
compute all the values PA,B, and for each of them the optimal first move. Using this information we can then play the game 
optimally. 
Note that our opponent can compute the same values and use them for his optimal play as well – when presented with a 
choice, he will always pick the option that will give us a lower profit. We can use this observation to write a recurrence 
relation for the values PA,B:
PA,A = PA,A+1 = 0
PA,B = maxC( min(SA,C+PA,C, SC,B+PC,B) )   
The second equality holds for B>A+1, where the maximum is taken over all C such that A<=C<=B.
An explanation in words: When we pick the place C where to place the bastion, the opponent will examine the two 
possibilities and leave us with the worse one. Knowing this, we can compute the profit for each possible choice of C, and 
pick the best one.

By using the above recurrence, one can easily compute a single value PA,B in O(N), and as there are O(N2) pairs A,B, the 
total time complexity of the precomputation is O(N3). We can then make moves in O(1) each.

We can easily precompute the values SA,B in time O(N2). However, note that the values SA,B can be precomputed in O(N) 
time with O(N) memory – it is enough to store the values S0,X, as SA,B=S0,B-S0,A.

To get a better time complexity, we need to find a way to limit the set of places C we need to examine when computing PA,B. 
We will use the following observation:
(*) Suppose that for the segment A,B the optimal split is C. Then for the segment A,B+1 the optimal split is at least C.
We will prove this later.

Once we trust that (*) holds, we can compute the values PA,B and CA,B in the following order:
[0,1) [1,2) ... [N-2,N-1) [N-1,N)
[0,2) [1,3) ... [N-2,N)
...
[0,N-1) [1,N)
[0,N)
When computing  PA,B and CA,B, we know from (*) and from symmetry that it is enough to consider CA,B between CA,B-1 and 
CA+1,B, inclusive.
For each row of our table above, the total number of possibilities we have to try when computing it in this way is at most 
2N. If this is not clear to you, consider the following example:
The best split for [0,7) is between the best split for [0,6) and the best split for [1,7).
The best split for [1,8) is between the best split for [1,7) and the best split for [2,8).
The best split for [2,9) is between the best split for [2,8) and ...

Thus we get a solution with both time and memory complexity O(N2).

Lemma 1:
For all A, B we have PA,B+1 >= PA,B.
This is obvious. A formal proof by induction is possible, based on the fact that making the same split for [A,B+1) as for 
[A,B) leads at least to the same profit.

Proof of the observation (*):
Let C be an optimal split for [A,B). We will show that for [A,B+1) there is some optimal split >= C.
Consider the values X =  SA,C+PA,C and Y = SC,B+PC,B.
We have PA,B = min(X,Y), and from Lemma 1 we have PA,B+1 >= min(X,Y).



Case 1: X <= Y.
In this case PA,B = X. Let D < C. Clearly SA,D < SA,C. From Lemma 1, PA,D <= PA,C. Therefore SA,D+PA,D <  SA,C+PA,C. If we 
make a split at D, our opponent will leave us with the part [A,D), and thus our total profit will be less than X. Thus such D 
can not be an optimal split, as PA,B+1 must be at least X.
Case 2: X > Y.
In this case PA,B = Y. Let D < C. The split at C was optimal for [A,B), therefore the split at D was equal or worse. This 
means that min(SA,D+PA,D, SD,B+PD,B) <= Y. Clearly, from D<C it follows that SD,B+PD,B >  SC,B+PC,B=Y for the same reasons 
as in the previous case. Thus we must have  SA,D+PA,D <= Y.
This means that if we split [A,B+1) at D, our opponent can leave us with [A,D), which will give us total profit at most Y. 
However, the split at C will give us total profit more than Y, therefore again D can not be an optimal split.


