
IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 circlecoloring • EN

Baby Bob’s Coloring Book (circlecoloring)
Author: Zsolt Németh

Developer: Zsolt Németh

Solution
The first observation is to notice that if there is a cycle consisting of an odd number of circles (which will
be referred to as vertices from now on), then there will be at least one pair having the same color in that
cycle. On the contrary, even cycles can be colored (e.g., using alternating colors) such that no adjacent
pairs are having the same color. This is enough to solve the first subtask.

The second important observation is to note that the new edges added by Baby Bob can be interpreted
as breaking a cycle into two smaller cycles that share exactly one common edge (the one drawn by Baby
Bob). We must also note that each cycle will have at least one edge that is not a common edge with
any other cycle – the condition that every vertex is connected to at most one other vertex by a new edge
guarantees this.

If we just consider the original cycle and M = 1 new line, that line can break the original cycle into two
cycles such that the number of vertices is either odd-odd, odd-even, or even-even.

• In the first case, we can color the endpoints of the common edge using the same color and every
other vertex using alternating colors to obtain the minimum number of pairs (=one pair) with the
same color.

• In the second case, color the endpoints of one non-common edge with the same color and everything
else using alternating colors.

• In the third case, we can color everything alternatingly to have 0 pairs with the same color.

This solves the third subtask.

We know that each even cycle can have zero pairs with the same color and each odd cycle must have
at least one. It is never worth coloring adjacent vertices of an even cycle using the same color, as we
can just recolor the cycle and if a shared edge had endpoints with the same color, we can recolor the
endpoints of one non-common edge of that cycle instead. So we must optimize the number of odd cycles
that share their pair of vertices having the same color with another odd cycle.

In the fourth subtask, each new edge breaks the "same" cycle into two new cycles, so we can think about
it as a sequence of cycles C0, . . . , CM , where adjacent cycles share exactly one common edge. In this case,
we can greedily pair the adjacent odd cycles in the sequence to have an optimal coloring.

In the general case, we shall notice that the new edges create a tree structure where the cycles are the
nodes and the newly drawn edges are the adjacency relations between the nodes. See, e.g., the following
example, where the image on the left will be converted to the tree on the right.

0
1

2

3

45

6

7

8 A

B

C

D

circlecoloring Author: Zsolt Németh Page 1 of 11



If we stick to the idea that each even cycle won’t have adjacent vertices with the same color, then removing
the nodes of even cycles breaks this tree into a forest where each tree consists of only nodes of odd cycles.
In the above example, node B will be removed and the forest consists of three trees, each with a single
node.

The number of adjacent vertices with the same color in each tree can be optimized by solving a maximum
matching in a tree problem (e.g., using dynamic programming; see also this problem: CSES - Tree
Matching). This solves the full problem.

We must also consider how to implement this efficiently. We can implement each step in the above
solution, noting that the tree structure can be constructed in linear time by starting from a vertex and
iterating over the original 0, 1, . . . , N − 1 cycle simulating DFS: when we reach an endpoint of a newly
drawn line, we either push it to a stack and start a new cycle, or close the current cycle depending
whether we encountered the same line before. This gives an O(N) solution as the maximum matching is
also linear.

We note that O(N log N) implementations where the coloring is maintained using range-update data
structures like BIT to perform flipping of the alternating coloring of cycles might be easier to implement
and shall also pass.

circlecoloring Author: Zsolt Németh Page 2 of 11

https://cses.fi/problemset/task/1130
https://cses.fi/problemset/task/1130


IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 esotericbovines • EN

Esoteric Bovines (esotericbovines)
Author: Bucă Mihnea-Vicent, iu

Developer: Bucă Mihnea Vicent, iu

Solution
Given two lists of integers, a and b, both of length N , the task is to find the K-th smallest value from the
set of bitwise XOR combinations between elements of the two lists, where each combination is formed by
XOR-ing an element from list a with an element from list b.

The order in which we will process the two lists of numbers does not matter.

Solving the second subtask involves brute-forcing the problem by computing the XOR value for each pair
of elements from lists a and b, resulting in N2 combinations. Then, either sorting these values or utilizing
an algorithm to find the K-th smallest element can identify the K-th value. Complexity O(N2log(n)) or
O(N2)

For tackling the fourth subtask, a binary search approach to the answer is adopted. The question is how
do we count the number of pairs with a bitwise XOR less than a given value x? Well to start, one of
the lists, say b, is inserted into a trie data structure. This approach mirrors the algorithm used to find
the minimal or maximal XOR (as seen in the third subtask). So for each element ai in a, the algorithm
counts how many elements bj in b exist such that the XOR of ai and bj is less than x. The complexity
of the algorithm is O(N log(N) log(MAX)), where MAX is the maximum value in the lists. It’s worth
noting that this process can also be optimized to run in O(MAX log(N)). Since this optimization is not
necessary to resolve the task, I’ll leave it as an exercise for the reader to explore this optimization further.

For the intended solution of the problem, we can observe from the previous subtask that binary search
isn’t necessary. Instead, we can recover bits of the answer one by one by descending the trie level by
level and maintaining pairs of trie nodes along with corresponding elements from list a that will provide
us with the correct higher bits of the answer.

At each step, we find the number of paths whose next bit equals 0. To do this, we iterate over the list
of pairs. For every pair, there are two ways to obtain 0 as the next bit of the result: the corresponding
bits of the values in the trie and elements in a need to be both 0s or both 1s. We compute the number
of paths as a product of the number of values in the corresponding subtrees and the number of elements
in a that have these properties. If the sum is greater than or equal to K, then the next bit will be equal
to 0; otherwise, it will be equal to 1, in this case, we need to reduce K by this number before proceeding
to the next level.

The number of pairs at most quadruples when we go one level deeper, but in total we will encounter the
same node at most 4 times in the pairs (twice with the first element in the pair and twice with the second
element in the pair). Complexity O(N log(MAX)) or in our case O(60 · N)

esotericbovines Author: Bucă Mihnea-Vicent, iu Page 3 of 11

https://en.wikipedia.org/wiki/Trie
https://judge.yosupo.jp/problem/set_xor_min


IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 geometricmean • EN

Geometric Mean (geometricmean)
Author: Péter Gyimesi

Developer: Péter Csorba

Solution
We will need the prime factorization of our N numbers. The prime factorization of V can be done in
O(

√
V ) time. As now V ≈ N2 this is O(N) for one number. So for N numbers, it can be done in O(N2)

time. Using the Sieve of Eratosthenes is a little bit slower, because of the precalculation costs, but should
fit in the time limit as well. For each number, we only need the exponents modulo 4, and if this is 0 we
do not need to keep that prime factor. For example, 2836 is just 32 now.

For an integer x let inv(x) denote the smallest integer such that x · inv(x) is a 4th power. For example
inv(2735) = inv(2331) = 2133. If we have the prime factorization of x then this can be quickly computed.

We want to find the (i < j < k < ℓ) quadruples. We will go through the array V with k and store the
possible values of inv(V [i] · V [j]) for all i < j(< k) pairs in a map. (We use the precalculated prime
factorization here.) After that, we will check the possible values of (k <)ℓ, and for each k < ℓ pair we
can find V [k] · V [ℓ] and from the map find the number of complementing pairs.

The final complexity will be O(N2 log N) using a search tree (map), or O(N2) using a hashed data
structure (unordered_map). Despite the large time limit: hopefully an O(N3) solution can not pass.

Remark. This problem is closely related to SET (the card game)! There a card can be represented by
a vector in Z4

3, as for each card there are 3 options for the color, shape, shading and the number of the
symbols. The 3 options can be represented by Z3 (0, 1, 2) and a card is a 4-dimensional vector: (color,
shape, shading, number). Three cards; three vectors u, v, w form a set iff u + v + w is the null vector
(0, 0, 0, 0) ∈ Z4

3 where + is the coordinate-wise sum modulo 3. In this abstract setting, it is clear that
for any two SET cards u, v there is a unique card w such that u, v, w form a set, namely w = −(u + v),
where − is coordinate-wise the negative modulo 3.

In our setting, we want to count SETs in Z∞
4 . Any positive integer n can be written as n =

2α23α35α57α7 . . . where we list all primes in increasing order in this decomposition, and the exponent
is 0 except for finitely many primes. Now n corresponds to the vector (α2%4, α3%4, α5%4, α7%4, . . .).
For example 2024 = 23305070111130170190231 . . . corresponds to (3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, . . .). Note that
here different numbers correspond to the same vector (e.g. 2 and 32 = 25). 4 numbers form a SET iff the
sum of the corresponding vectors is the zero vector (0, 0, 0, . . .). Now 4 numbers have integer geometric
mean iff they form a SET.

geometricmean Author: Péter Gyimesi Page 4 of 11

https://en.wikipedia.org/wiki/Set_(card_game)


IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 grasshopper • EN

Carlo’s Garden (grasshopper)
Author: Péter Csorba

Developer: Davide Bartoli

Solution
Let’s look at the case N = 2 before the general case. Assume that we want to prevent the grasshoppers
from reaching the x + y = 10 line. (There are 11 places there, but the grasshopper will get there before
we can place 11 traps.) We put the first trap to (5, 5). Now assume that the grasshopper jumps to (0, 2)
(via (0, 1)). Now we do not need to place traps on the red squares, so we only need to place 9 traps to
catch, and hopefully, after each round, we need to place fewer.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Let’s place traps on every second square on the x + y = 10 line such that we place as far as possible from
the boundary (blue) of the remaining 9 squares. So we place the second trap at (3, 7). Assume now that
the grasshopper jumps to (0, 4), giving us 2 more red squares not to care about, and we place our trap
at (1, 9).

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Assume that the grasshopper moves to (2, 4), since we already placed traps on every second square we
will get 1 more red square on average. We place our next trap on the closest place to the center of the
remaining squares on the x + y = 10 line, to (4, 6), and after that, we will place traps on every second

grasshopper Author: Péter Csorba Page 5 of 11



square closest to the grasshopper. Assume that the grasshopper jumps to (2, 6), and we place a trap at
(2, 8) blocking all places reachable for the grasshopper on the x + y = 10 line, winning the game.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Let’s look at the general case where N can be anything. After T seconds the grasshopper makes T · N
jumps: arriving at the line x+y = TN1, which contains TN+1 squares. After each second the grasshopper
can not reach N of these points. In other words, the midpoint of the reachable subinterval can shift by
at most N

2 . So the idea is to first place a trap on the midpoint of this line, and after that place traps
on the Nth, 2Nth, 3Nth neighbor such that the midpoint of the traps is as close to the midpoint of the
grasshopper reachable subinterval as possible. Note that the midpoint of these traps will shift by N

2 in
each round.

⌈T
2 ⌉+2 seconds is used to place traps on every Nth squares of the reachable subinterval for the grasshop-

per.
We use the next ⌈T

4 ⌉ + 2 seconds to place a trap on every Nth squares (starting from one already not
trapped point close to the middle) of the remaining reachable subinterval of the grasshopper.
. . . The last ⌈ T

2N ⌉ + 2 seconds is used to place a trap on every remaining Nth square of the (already not
trapped) remaining reachable subinterval of the grasshopper.
After these N stages we only have to wait (place traps in arbitrary places) and the grasshopper is
CAUGHT.
This will work if ⌈

T

2

⌉
+ 2 +

⌈
T

4

⌉
+ 2 + . . . +

⌈
T

2N

⌉
+ 2 ≤ T

Since T
2 + T

4 + . . . + T
2N = T − T

2N and ⌈a⌉ ≤ a + 1 the above holds if

T − T

2N
+ 3N ≤ T

So we need 3N ≤ T
2N , 3N · 2N ≤ T . If N = 5 then we get that 15 · 25 = 480 seconds is more than enough.

1Actually it is better to consider the x + y = T N − N + 1 line...

grasshopper Author: Péter Csorba Page 6 of 11



IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 replacechar • EN

Replace the Characters (replacechar)
Author: Bernard Ibrahimcha

Developer: Bernard Ibrahimcha

Solution
First, it is not optimal to replace the same character more than once. So now the problem becomes to
select some characters that we want to replace, and the others will stay the same.

Now let’s look at the characters that will stay the same. They must be non-decreasing when looking at
them alone (imagine removing the characters that we apply the operation on).

Also, minimizing the number of operations is equivalent to maximizing the number of characters that
will stay the same.

The problem now becomes to find a subsequence of the string of maximum length that is non-decreasing.

This problem can be solved using dynamic programming.

Let dpi,j be the length of the longest non-decreasing subsequence of the first i (1 ≤ i ≤ n) characters of
the string while the last selected character in that subsequence being j (0 ≤ j ≤ 25).

The transitions are:

— we can either take si and go from dpi,j to dpi+1,si and we add 1 to the length of the non-decreasing
subsequence. We can do this transition only if si ≥ j.

— or not take si and go from dpi, j to dpi+1,j .

Then we can use a DFS to find the indices of the subsequence.

All the indices in the subsequence will stay the same and the others will be replaced with the last
unreplaced character before them (or ’a’ if there are no characters that were replaced before this one).

replacechar Author: Bernard Ibrahimcha Page 7 of 11



IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 triangles • EN

Triangle Counting (triangles)
Author: Péter Gyimesi

Developer: Stefan Dascalescu

Solution
For the small subtasks, you can implement brute-force-like solutions which rely on storing the edges in
an adjacency matrix and processing the updates one by one.

A significant improvement that gets us up to 53 points consists of using bitsets to speed up the process
of counting the triangles by finding for all pairs (i, j), how many values x exist such that there is an edge
between x and i and an edge between j and x, which can result in updates being processed using bitwise
AND.

To find the full solution, we can rely on the following observation: for any triplet of distinct vertices,
if they do not form a triangle, then the outdegree of one of the vertices is 2, and the other two vertex
cannot have this property. This makes it possible to count the number of triplets that are NOT triangles
by looking at the outdegrees of every vertex.

There are N×(N−1)×(N−2)
6 triplets of distinct vertices. For each of the N vertices, the number of triplets

in which a given vertex i is the one having outdegree 2 is Xi×(Xi−1)
2 , where Xi is the outdegree of i (i.e.,

the number of ways to select two distinct outgoing edges among all outgoing edges from i). Using this
observation, the number of triangles initially is

N × (N − 1) × (N − 2)
6 −

N∑
i=1

Xi × (Xi − 1)
2 ,

and we can maintain the value of this expression over the updates by noticing that each update modifies
the outdegree of two vertices, affecting only two terms in the summation. So the updates are done in
constant time, and the total complexity is O(N + Q).

triangles Author: Péter Gyimesi Page 8 of 11



IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 tvseries • EN

TV Series (tvseries)
Author: Alessandro Bortolin

Developer: Tommaso Dossi

Solution
Denote by dpi,d the maximum number of days on which we participated in the conversation about the
first i tv-series that we finished watching until at most day d. The answer we seek is the value of dpN,D.
Initially we have dp0,d = 0 for all d. Let’s iterate over the tv series and suppose that we already processed
the first i − 1 series and see how to take the i-th one into account.

The days on which this TV series is talked about are between S[i] and E[i]. For each day j such that
S[i] ≤ j ≤ E[i], we know that if we finish watching the series before day j, then we will be able to talk
about it for (at least) E[i]− j +1 days. For this to happen, we must start watching it before day j −X[i].
So if we start watching series i on day k, then dpi,d for each d = k + X[i], k + X[i] + 1, . . . is at least
dpi−1,k + E[i] − j + 1.

If we iterate over each j from S[i] to E[i] and each k from day 1 to j − X[i] − 1 and do the update for
every such d, then it may be too slow (with complexity O(N · D2)). Instead, let’s just first set

dpi,k+X[i] = max
S[i]≤j≤E[i],j>k+X[i]

dpi−1,k + E[i] − j + 1 = dpi−1,k + max(0, E[i] − max(S[i] − 1, k + X[i]))

and then, for each d = 2, . . . , D, let dpi,d = max(dpi−1,d, dpi,d−1, dpi,d). This way the overall time
complexity is O(N · D), which is sufficient.

tvseries Author: Alessandro Bortolin Page 9 of 11



IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 washington • EN

Washington Distance (washington)
Author: Gabriella Blénessy

Developer: Stefan Dascalescu

Solution
To solve this problem, we need to be very careful about converting the coordinates given according to
the Washington Distance by carefully treating each of the four cases depending on the quadrant we are
at. The key thing is to be careful about the order of the letters as well as checking each direction and
seeing if we have to flip the y coordinate or not.

Once we are done with the conversion, all we have to do is simply compute the Manhattan Distance by
using the well-known formula.

washington Author: Gabriella Blénessy Page 10 of 11



IIOT2024 – International Finals Editorial �����

Syria – Hybrid Event, May 10-12th, 2024 watchtowers • EN

Watch Towers (watchtowers)
Author: Áron Noszály

Developer: Apraham Jamil Avenian

Solution
For every watchtower, we must calculate two values: the minimal increase to see all watchtowers to its
left and its right. The answer will be the maximum of these two values. Now let’s just focus on the
former.

So we would like to see the ith watchtower from the kth for all i < k. Now, for all j such that i < j < k
k must be "higher" than the i − j line, otherwise j obstructs i from k. More formally we need

Hi + Hj − Hi

j − i
(k − i) ≤ Hk

This gives us a O(N3) solution, just check all (i, j, k) triplets.

Now, we can notice that it’s sufficient to only look at adjacent watchtowers. Let’s look at the line given
by watchtowers i − j. i − (i + 1) and (j − 1) − j must both have a smaller slope than i − j, otherwise one
of them is at least as "good" as i − j. So i − (i + 1) goes "under" and (j − 1) − j "over" this line. This
means there must be a moment when we cross i − j as we go from left to right. At that moment the
watchtowers there cross i−j and have a larger slope, i.e. they’re adjacent and as good as i−j. So we can
always find an adjacent pair of watchtowers that are as "good" as any non-adjacent pair of watchtowers.
Using this observation the previous solution can be optimized to O(N2).

To optimize further, notice that at index k we want to calculate

max
i<k

(Hi+1 − Hi)(k − i) = max
i<k

(Hi+1 − Hi)k + ci = max
i<k

mik + ci

That is a maximum of linear functions. So we need a data structure that supports insertion of linear
functions and querying the maximal value at a given position. This problem is usually called "dynamic
convex hull trick" and can be solved in a lot of ways in O(log N) per operation. For example, using
Li-Chao tree or a Binary Search tree. So to summarize, we have a solution with O(N log N) complexity.

watchtowers Author: Áron Noszály Page 11 of 11


	Baby Bob's Coloring Book (circlecoloring)
	Esoteric Bovines (esotericbovines)
	Geometric Mean (geometricmean)
	Carlo's Garden (grasshopper)
	Replace the Characters (replacechar)
	Triangle Counting (triangles)
	TV Series (tvseries)
	Washington Distance (washington)
	Watch Towers (watchtowers)

