

Task A13. Self-describing

🌠 3 s 💾 1024 MB

Author: Ivan Lupov

Elena is yet again tasked with solving a problem involving subarrays with a special property. By now she finds these tasks banal, so she leaves writing a solution to you - the IATI contestants. The problem statement is as follows:

We define a "self-describing" array b_0, b_1, \dots, b_{M-1} – an array in which for all b_i it is true that the number b_i appears exactly b_i times in the entire array. [1, 2, 2], [5, 5, 5, 5, 5], [3, 1, 3, 2, 3, 2] are all examples of "self-describing" arrays, while [100, 1, 2, 2] (there is only one occurrence of 100), [1,1,1,1,1] (there are 5 occurrences of 1) are all examples of non-"self-describing" arrays.

Additionally for an array b_0, b_1, \dots, b_{M-1} we define a "self-describing" subarray as a subarray $b_l, b_{l+1} \dots b_r$ that is itself "self-describing".

You are given an array a_0, a_1, \dots, a_{N-1} and Q queries (l, r) such that $l \leq r$. For each query you should find the number of "self-describing" subarrays (l', r') for which $l \leq l' \leq l'$ $r' \leq r$ for all queries.

Implementation details

You should implement the following two procedures:

```
void init(int N, int Q, const std::vector<int>& a)
```

This function will be called once per test and provides your program with the original array as a vector, consisting of the N values $a_0, a_1, \dots a_{N-1}$ in this order.

```
long long query(int l, int r)
```

This function will be called Q times per test and will correspond to a query for the range (l, r), it should return the answer to that query.

Local testing

To test your program locally, a local grader and a header file are provided. The local grader reads N, Q, a_1, a_2, \dots, a_N and Q queries (l, r) in this order, calls your init and then outputs the answers your program gave to all query calls. You are free to modify the local grader.

Constraints

- $1 \le N, Q \le 3 \times 10^5$
- $1 \le a_i \le N$ for all $0 \le i \le N-1$
- $0 \le l \le r \le N-1$ for all queries.

$Sample\ test$

Input	Ouput
7 3	3
1 2 1 2 3 3 3	2
0 3	5
2 6	
0 6	

Subtasks

Subtask	Points	Necessary subtasks	N	Q	Other constraints
0	0	_	_	_	Example.
1	6	_	≤ 500	= 1	
2	6	1	≤ 5000	= 1	The only query is $[1, N]$.
3	39	1 - 2	$\leq 3 \times 10^5$	= 1	
4	11	0 - 3	$\leq 3 \times 10^5$	≤ 500	
5	16	0 - 4	$\leq 3 \times 10^5$	$\leq 5 \times 10^4$	_
6	22	0 - 5	$\leq 3 \times 10^5$	$\leq 5 \times 10^5$	_

The points for a subtask are given only if all tests for it and the required subtasks are passed successfully.