
1

Syllabus for the Junior Group of the

International Autumn Tournament of Informatics (IATI),

November, 2022

The purpose of this document is to serve as a set of guidelines to help decide

whether a task is appropriate for the Junior Group of IATI, but it cannot serve as

a strong limitation on the subject matter of the proposed tasks.

The syllabus presented below has been compiled using the International

Olympiad in Informatics (IOI) syllabus and the topics excluded from the IOI

syllabus are noted.

 1. Mathematics

1.1. Arithmetic

✓ Integers, operations (including exponentiation), comparison

✓ Basic properties of integers (sign, parity, divisibility)

✓ Basic modular arithmetic: addition, subtraction, multiplication, division, and

inverse elements

✓ Prime numbers, Fermat's little theorem

✓ GCD and LCM

✓ Fractions, percentages

✓ Representations of integers in different bases

 Additional topics from number theory

 Complex analysis for increasing precision of floating-point computations

 Complex numbers

1.2. Geometry

✓ Line, line segment, angle, triangle, rectangle, square, circle

✓ Point, vector, coordinates in the plane

✓ Polygon (vertex, side/edge, simple, convex, inside, area)

✓ Euclidean distance

✓ Pythagorean theorem

 Geometry in 3D or higher dimensional spaces

 General conics (parabolas, hyperbolas, ellipses)

 Trigonometric functions

1.3. Discreate Structures (DS)

DS1. Sets, relations, and functions

✓ Sets (inclusion/exclusion, complements, Cartesian products, power sets)

2

✓ Relations (reflexivity, symmetry, transitivity, equivalence relations, total/linear

order relations, lexicographic order)

✓ Functions (surjections, injections, inverses, composition)

 Cardinality and countability (of infinite sets)

DS2. Basic logic

✓ First-order logic

✓ Logical connectives (incl. their basic properties)

✓ Truth tables

✓ Universal and existential quantification

✓ Using and applying basic rules for implication

 Normal forms

 Validity

 Limitations of predicate logic

DS3. Proof techniques

✓ Notions of implication, converse, inverse, contrapositive, negation, and

contradiction

✓ Direct proofs, proofs by: counterexample, contraposition, contradiction

✓ Mathematical induction

✓ Strong induction (also known as complete induction)

✓ Recursive mathematical definitions (including mutually recursive definitions)

DS4. Basics of counting

✓ Counting arguments (sum and product rule, arithmetic and geometric progressions,

Fibonacci numbers)

✓ Permutations, variations, and combinations with or without repetition (basic

definitions and applications)

✓ Factorial function, binomial coefficients

✓ Inclusion-exclusion principle

✓ Pigeonhole principle

✓ Pascal’s identity, binomial theorem

 Solving of recurrence relations

 Burnside lemma

DS5. Graphs and trees

✓ Undirected graphs (vertex/node, edge, degree, adjacency, handshaking lemma)

✓ Directed graphs (in-degree, out-degree) and directed acyclic graphs (DAG)

✓ Multigraphs, graphs with self-loops

✓ Bipartite graphs

✓ ‘Decorated’ graphs with edge/node labels, weights, colors

✓ Paths in graphs (undirected and directed path, cycle, Euler tour/trail, Hamilton

path/cycle)

3

✓ Spanning trees (subgraph)

✓ Trees (leaf, diameter, forest)

✓ Rooted trees (root, parent, child, ancestor, subtree)

✓ Traversal strategies

 Planar graphs

 Hypergraphs

 Specific graph classes such as perfect graphs

DS6. Discreate probability – X

1.4. Other Areas

✓ Simple combinatorial games such as NIM game and others

✓ Matrices (definition)

 Complex theory of combinatorial games (for example Sprague-Grundy theory)

 Linear algebra, including (but not limited to):

▪ Matrix multiplication, exponentiation, inversion, and Gaussian elimination

▪ Fast Fourier transform

 Calculus

 Statistics

2. Computer Science

2.1. Programming Fundamentals (PF)

PF1. Basic programming constructs

✓ Basic syntax and semantics of C++

✓ Variables, types, expressions, and assignment

✓ Simple I/O

✓ Conditional and iterative control structures

✓ Functions and parameter passing

✓ Recursion

✓ Bitwise operations

✓ Structured decomposition

PF2. Fundamental data structures

✓ Primitive types (Boolean, signed/unsigned integer, character)

✓ Arrays

✓ Strings and string processing

✓ Static and stack allocation (elementary automatic memory management)

✓ Linked structures

✓ Implementation strategies for graphs and trees

✓ Elementary use of real numbers in numerically stable tasks

4

✓ The floating-point representation of real numbers, the existence of precision issues

(whenever possible, avoiding floating-point calculations is preferred, but it is not

expected the need for extensive use of fractions to perform exact calculations)

✓ Pointers and references

✓ Data representation in memory

 Heap allocation

 Runtime storage management

 Non-trivial calculations on floating-point numbers, manipulating precision errors

2.2. Algorithms and Complexity (AL)

AL1. Algorithmic analysis

✓ Algorithm specification, precondition, postcondition, correctness, invariants

✓ Asymptotic analysis of upper complexity bounds

✓ Amortized analysis

✓ Big O notation

✓ Standard complexity classes: constant, logarithmic, linear, 𝑂(𝑛 log2 𝑛), quadratic,

cubic, exponential, etc.

✓ Time and space trade-offs in algorithms

✓ Empirical performance measurements

✓ Identifying differences among best, average, and worst-case behaviors

✓ Tuning parameters to reduce running time, memory consumption or other measures

of performance

 Asymptotic analysis of average complexity bounds

 Using recurrence relations to analyze recursive algorithms (except the simple

recurrent relation used to analyze merge sort)

AL2. Algorithmic strategies

✓ Simple loop design strategies

✓ Brute-force algorithms (exhaustive search)

✓ Greedy algorithms

✓ Divide-and-conquer

✓ Backtracking (recursive and non-recursive), Branch-and-bound

✓ Dynamic programming, including (but not limited to):

▪ basic and classical DP

▪ DP with bitmasks

▪ digit DP

▪ DP on tree and DAG

 Meet in the middle

 Square root decomposition

 Heuristics

 Finding good features for machine learning tasks

 Discrete approximation algorithms

 Randomized algorithms.

5

 Clustering algorithms (e.g. k-means, k-nearest neighbor)

 Minimizing multi-variate functions using numerical approaches

AL3a. Basic algorithms

✓ Simple algorithms involving integers: conversion between number systems with

different bases, Euclid’s algorithm, primality test by 𝑂(√𝑛) trial division, Sieve of

Eratosthenes, factorization (by trial division or a sieve), fast exponentiation

✓ Simple operations on arbitrary precision integers (addition, subtraction,

multiplication)

✓ Simple array manipulation (filling, shifting, rotating, reversal, resizing,

minimum/maximum, prefix sums, histogram, count sort)

✓ Sliding window and two pointers

✓ Simple string algorithms (e.g. naive substring search)

✓ Sequential processing/search and binary search (also binary search the answer)

AL3b. Advanced algorithms

✓ Extended Euclid’s algorithm

✓ Bucket sort and radix sort

✓ Quicksort and Quickselect to find the k-th smallest element

✓ 𝑂(𝑛 log2 𝑛) worst-case sorting algorithms (heap sort, merge sort)

✓ Traversals of ordered trees (pre-, in-, and post-order)

✓ Basics of combinatorial game theory, winning and losing positions, minimax

algorithm for optimal game playing

✓ Arithmetical expressions i.e. shunting yard algorithm

✓ Binary lifting for finding LCA

✓ String hashing, Rabin-Karp algorithm

 2-SAT

 Advanced string algorithms such as KMP, Z-algorithm, Aho-Corasick

 Complex dynamic programming optimizations such as divide and conquer, convex

hull trick

AL3c. Graph algorithms

✓ Depth- and breadth-first traversals

✓ Applications of the depth-first search, such as topological ordering and Euler

tour/trail

✓ Finding connected components and transitive closures

✓ Shortest-path algorithms (Dijkstra, Bellman-Ford, Floyd-Warshall)

✓ Minimum spanning tree (Jarnik-Prim and Kruskal algorithms)

✓ Biconnectivity in undirected graphs (bridges, articulation points)

✓ Connectivity in directed graphs (strongly connected components)

✓ Graph extension

 Lexicographical BFS, maximum adjacency search and their properties

 Maximum bipartite matching

 Maximum flow. Flow/cut duality theorem

6

AL3d. Geometric algorithms

In general, the SC has a strong preference towards problems that can be solved using

integer arithmetic to avoid precision issues. This may include representing some

computed values as exact fractions, but extensive use of such fractions in calculations

is discouraged.

Additionally, if a problem uses two-dimensional objects, the SC prefers problems in

which such objects are rectilinear.

✓ Representing points, vectors, lines, line segments

✓ Intersection of two lines

✓ Coordinate compression

✓ Sweeping line method

✓ Checking for collinear points, parallel/orthogonal vectors, and clockwise turns (for

example, by using determinant evaluation or cross product and dot product of two-

dimensional vectors)

✓ Computing the area of a polygon from the coordinates of its vertices

 Checking whether a general polygon contains a point

 Advanced algorithms for finding convex hull

 Point-line duality

 Halfspace intersection, Voronoi diagrams, Delaunay triangulations

 Computing coordinates of circle intersections against lines and circles

 Linear programming in 3 or more dimensions and its geometric interpretations

 Center of mass of a 2D object

 Computing and representing the composition of geometric transformations if the

knowledge of linear algebra gives an advantage

AL4. Data structures

✓ Stacks, queues and dequeues

✓ STL data structures: pair, vector, priority queue, (multi)set, (multi)map and

unordered structures

✓ Representations of graphs (adjacency lists, adjacency matrix, edge list)

✓ Binary heap data structures

✓ Representation of disjoint sets: the Union-Find data structure

✓ Statically balanced binary search trees. Instances of this include binary index trees

(also known as Fenwick trees) and segment trees (also known as interval trees and

tournament trees). Lazy propagation technique

✓ Sparse table for LCA or RMQ queries

✓ Nesting of data structures, such as having a sequence of sets

 Merge-sort tree

 Persistent data structures

 Balanced binary search trees

 Augmented binary search trees

 Tries

 String data structures such as suffix array/tree/automata

7

 Heavy-light decomposition and separator structures for static trees

 Data structures for dynamically changing trees and their use in graph algorithms

 Complex heap variants such as binomial and Fibonacci heaps

 Cartesian tree

 Two-dimensional tree-like data structures (such as a 2D statically balanced binary

tree or a treap of treaps) used for 2D queries

 Using and implementing hash tables (incl. strategies to resolve collisions) but one

is expected to know and use STL unordered data structures

AL5. Distributed algorithms – X

AL6. Cryptographic algorithms – X

AL7. Parallel algorithms – X

2.3. Other Areas

▪ Basic computability – X

▪ The complexity classes of P and NP – X

▪ Automata and grammars – X

