
Preliminaries 

We are interested in impartial games under the normal play convention which must end. These are games 

where the two players have the same move set from a given position and where the winning player is the 

one who plays the final move. We can define each game as a set of games 𝐺 = {𝐺1, 𝐺2, … }. This means 

that 𝐺 is the game where the current player chooses one of the 𝐺𝑖-s and “moves” to it, then the second 

player plays in the chosen 𝐺𝑖. For brevity, we will write this as 𝐺 = {𝐺𝑖}, where the 𝑖 implicitly indexes 

through all the possible games 𝐺1, 𝐺2, … Notice that this set need not be finite. Furthermore, we care 

about combining games. Given games 𝐺 and 𝐺′, we say that 𝐺 + 𝐺′ is the game where the current player 

can either play in 𝐺 or in 𝐺′ (but not both or neither). Notice that a game of Nim is such a combination of 

several Nim heaps. Formally, 𝐺 + 𝐺′ = {𝐺𝑖 + 𝐺′} ∪ {𝐺 + 𝐺𝑖
′}. Additionally, we say that a game 𝐺 is 

winning, if under optimal play the first player wins, and we call it losing, otherwise. Finally, we say that 

two games 𝐺 and 𝐺′ are equivalent, which we write as 𝐺 ≈ 𝐺′, if and only if for all other games 𝐻, 𝐺 + 𝐻 

is winning if and only if 𝐺′ + 𝐻 is winning. 

Now, we familiarize ourselves with the Sprague-Grundy theorem. It states that every game 𝐺 is equivalent 

to a single Nim heap ∗ 𝑛 with 𝑛 pebbles. While the proof is somewhat involved, we give the recursive 

procedure for computing this 𝑛. First, the empty game ∅ ≈ ∗ 0. Then, for all other games 𝐺, we have that 

𝐺 = {𝐺𝑖} ≈ {∗ 𝑛𝑖} ≈ ∗ mex{𝑛𝑖}; mex 𝐴 is the minimum excluded value of 𝐴, the smallest number 𝑚, such 

that 𝑚 ∉ 𝐴. We can further show that ∗ 𝑛 + ∗ 𝑚 ≈ ∗ (𝑛 ⊕ 𝑚), where 𝑛 ⊕ 𝑚 is the XOR of 𝑛 and 𝑚. 

Subtask 1: 8 points, 8 total 

The first subtask is just the standard game of Nim. The game is winning, iff the XOR of the heap sizes is 

non-zero. This follows from the above. It can also be directly proven by showing that from any non-zero 

position, you can reach a zero position, and from any zero position, you can only reach non-zero positions.  

Subtask 2: 11 points, 19 total 

We compute the XOR of all pebble heap sizes and the parity of the number of stones. The game is winning, 

iff the XOR of the pebble sizes is non-zero or the parity is odd. This follows from the next part. 

Subtask 3: 12 points, 31 total 

We can analyze these games either by directly looking at winning and losing positions or by extending the 

Sprague-Grundy theorem to them. First, we will follow the direct approach. We look at the XORs of just 

the pebble heaps 𝑆′ and the XOR of the stone heaps 𝐵′. Note that we treat a mixed heap in the same way 

as two heaps: one with only pebbles and one with only stones. We claim that a position is losing, iff 𝐵′ =

0 and 𝑆′ = 0. First, consider every winning position. If 𝐵′ = 0 and 𝑆′ ≠ 0, then by using the standard Nim 

approach we can reach a losing position. Similarly, if 𝐵′ ≠ 0 and 𝑆′ = 0 (since 𝐾 = 0 we can remove the 

stones without adding any pebbles). Then, if 𝐵′ ≠ 0 and 𝑆 ≠ 0, we choose our stone move as with the 

previous case, but we also take all pebbles from the chosen heap; after that we add 𝑆′′ pebbles, where 𝑆′′ 

is the XOR of all other pebble heaps. Therefore, from all winning positions, we can reach a losing position. 

Finally, from a losing position (𝐵′ = 𝑆′ = 0), we have two choices: if we take only pebbles, then the pebble 

XOR we leave will be non-0, and, if we take some stones, then the stone XOR we leave will be non-0; in 

either case, we cannot reach a losing position. Therefore, our claim is correct. 

The alternative approach is to naturally extend the Sprague-Grundy theorem to transfinite ordinals of the 

form 𝜔𝐵 + 𝑆 and to show ∗ (𝜔𝐵 + 𝑆) + ∗ (𝜔𝐵′ + 𝑆′) ≈ ∗ (𝜔(𝐵 ⊕ 𝐵′) + (𝑆 ⊕ 𝑆′)). Here 𝜔𝐵 + 𝑆 is the 

game that corresponds to 𝐵 stones and 𝑆 pebbles with 𝐾 = 0.  



Subtask 4: 18 points, 49 total 

This subtask requires the understanding needed for the next one without coding up anything complicated. 

It allows us to find the equivalent transfinite Nim heaps for the first 15 interesting heaps by hand and 

hard-code them. Thus, we leave the mathematics to the next part. 

Subtask 5: 18 points, 67 total 

We adopt the notation (𝐵, 𝑆)𝐾 to mean a heap with 𝐵 stones and 𝑆 pebbles under a given 𝐾. Our goal is 

to find 𝑋 and 𝑌 such that (𝐵, 𝑆)𝐾 ≈ (𝑋, 𝑌)0 = ∗ (𝜔𝑋 + 𝑌) = ∗ 𝑓𝐾(𝐵, 𝑆).  We do this recursively using: 

(𝐵, 𝑆)𝐾 = {(𝐵′, 𝑆′)𝐾 ∣ 𝐵′ < 𝐵 ∧ 𝑆′ ≥ 𝐵𝐾} ∪ {(𝐵, 𝑆′)𝐾 ∣ 𝑆′ < 𝑆)} 
≈ { ∗ 𝑓𝐾(𝐵′, 𝑆′) ∣ 𝐵′ < 𝐵 ∧ 𝑆′ ≥ (𝐵 − 𝐵′)𝐾} ∪ { ∗ 𝑓𝑘(𝐵, 𝑆′) ∣ 𝑆′ < 𝑆)} 
≈ ∗ mex({𝑓𝐾(𝐵′, 𝑆′) ∣ 𝐵′ < 𝐵 ∧ 𝑆′ ≥ (𝐵 − 𝐵′)𝐾} ∪ {𝑓𝑘(𝐵, 𝑆′) ∣ 𝑆′ < 𝑆)})  

Therefore, we just need to recursively (with memoization) compute the interesting values of 𝑓 by 

computing such MEX-es, using the fact that ordinals of the form 𝜔𝑋 + 𝑌 are ordered lexicographically. 

Additionally, to prevent having to iterate through an infinite number of values, we need to notice (or 

prove by induction) that when 𝑆 ≥ 𝐵𝐾, (𝐵, 𝑆)𝐾 ≈ 𝜔𝐵 + (𝑆 − 𝐵𝐾). Therefore, there are 𝑂(𝐵2𝐾) 

interesting heaps and for each there are 𝑂(𝐵2𝐾) possible interesting moves, which we need to sort and 

compute the MEX of. The total complexity of this naïve approach is 𝑂(𝐵4𝐾2 log 𝐵𝐾). 

To illustrate, we give an example with 𝐾 = 2 for computing the value of the first empty cell in the table 

below (rows are indexed by 𝐵 and columns – by 𝑆): 

𝜔0 + 0 𝜔0 + 1 𝜔0 + 2 𝜔0 + 3 𝜔0 + 4 𝜔0 + 5 

𝜔0 + 0 𝜔0 + 1 𝜔1 + 0 𝜔1 + 0 𝜔1 + 2 𝜔1 + 3 

𝜔0 + 0 𝜔0 + 1 𝜔0 + 2 𝜔0 + 3 𝜔2 + 0 𝜔2 + 1 

𝜔0 + 0 𝜔0 + 1 𝜔0 + 4    

First, we want to compute 𝑓2(3,3). We list the reachable heaps from (3,3)2 (where … means the list of all 

larger heaps with the same 𝐵): (0,6)2, … , (1,4)2, … , (2,2)2, … , (3,0)2, (3,1)2, (3,2)2. Now we give their 

values: 𝜔0 + 6, … , 𝜔1 + 2, … , 𝜔0 + 2, 𝜔0 + 3, 𝜔2 + 0, … , 𝜔0 + 0, 𝜔0 + 1, 𝜔0 + 4. The smallest value 

not in this list is 𝜔5 + 0, so that is the value of the first unfilled cell. 

Subtask 6: 10 points, 77 total 

Now we need to notice that the interesting moves from (𝐵, 𝑆)𝐾 are the same ones as from (𝐵, 0)𝐾 plus 

the moves to (𝐵, 0)𝐾 , (𝐵, 1)𝐾 , … , (𝐵, 𝑆 − 1)𝐾. Therefore, we compute 𝑓𝐾(𝐵, 𝑆) for all 𝑆 < 𝐵𝐾 by sorting 

the interesting values of the (multi)set {𝑓𝐾(𝐵′, 𝑆′) ∣ 𝐵′ < 𝐵 ∧ 𝑆′ ≥ (𝐵 − 𝐵′)}, iterating through it and 

setting the “gaps” to be values of 𝑓𝐾(𝐵, 0), 𝑓𝐾(𝐵, 1), … , 𝑓𝐾(𝐵, 𝐵𝐾 − 1). Again, we need to use the 

(𝐵, 𝑆)𝐾 ≈ 𝜔𝐵 + (𝑆 − 𝐵𝐾) fact. Therefore, for each 𝐵 we only need to sort and iterate through 𝑂(𝐵2𝐾) 

interesting values, and thus the total complexity is 𝑂(𝐵3𝐾 log 𝐵𝐾). 

Again, we illustrate by computing the values in the entire 𝐵 = 3 row of the table above. The values 

reachable from (3,0)2 are:  (0,6)2, … , (1,4)2, … , (2,2)2, … Then, their values, in ascending order, are: 

𝜔0 + 2, 𝜔0 + 3, 𝜔0 + 6, … , 𝜔1 + 2, … , 𝜔2 + 0, … Now we need to find the “gaps” below 𝜔3 + 0; they 

are: 𝜔0 + 0, 𝜔0 + 1, 𝜔0 + 4, 𝜔0 + 5, 𝜔1 + 0, 𝜔1 + 1. Therefore, these are the first six values for 𝐵 = 3. 

  



Subtask 7: 11 points, 88 total 

Let us say that 𝑅𝐾(𝐵, 𝑆) is the (multi)set of the interesting 𝑓𝐾 values of moves from (𝐵, 𝑆)𝐾. First, we need 

to prove (by induction) that it is a set and not just a multiset, meaning that all its elements are unique. 

This follows from the fact that if (𝐵′, 𝑆′)𝐾 and (𝐵′′, 𝑆′′)𝐾 are interesting moves of (𝐵, 𝑆)𝐾 either (𝐵′, 𝑆′)𝐾 

is an interesting move of (𝐵′′, 𝑆′′)𝐾 or vice verse. WLOG assume the former. Then, from 𝑓𝐾(𝐵′, 𝑆′) =

mex 𝑅𝐾(𝐵′, 𝑆′) and 𝑓𝐾(𝐵′′, 𝑆′′) ∈ 𝑅𝐾(𝐵′, 𝑆′), it follows that 𝑓𝐾(𝐵′, 𝑆′) ≠ 𝑓𝐾(𝐵′′, 𝑆′′). Thus, 𝑅𝐾(𝐵, 𝑆) 

contains no duplicates. 

Now we examine 𝑅𝐾(𝐵 − 1) ∖ 𝑅𝐾(𝐵). The only heaps unreachable from (𝐵, 0)𝐾 but reachable form 

(𝐵 − 1,0)𝐾, are of the form (𝐵′, 𝑆′)𝐾 where 𝐵′ < 𝐵 and (𝐵 − 𝐵′ − 1)𝐾 ≤ 𝑆′ < (𝐵 − 𝐵′)𝐾. Notice that 

are 𝐵𝐾 such heaps. By the property above, their values are all distinct from the values of all other heaps 

reachable from (𝐵 − 1,0)𝐾. Therefore, all their values are “gaps” in 𝑅𝐾(𝐵). However, by the definition of 

𝑓𝐾(𝐵 − 1, 𝑆), it follows that 𝑅𝐾(𝐵 − 1) ∪ { 𝑓𝐾(𝐵 − 1, 𝑆′) ∣∣ 𝑆′ ≥ 0 } has no “gaps”, meaning that it is equal 

to the set {𝜔𝑋 + 𝑌 ∣ 0 ≤ 𝑋 ≤ 𝐵 − 1 ∧ 𝑌 ≥ 0} (otherwise all “gaps” would be included as values of 

𝑓(𝐵 − 1, 𝑆′) for some 𝑆′). Thus, we conclude that the only “gaps” of 𝑅𝐾(𝐵) are the 𝐵𝐾 values in the given 

form, which finally proves that (𝐵, 𝑆)𝐾 ≈ 𝜔𝐵 + (𝑆 − 𝐵𝐾) for 𝑆 ≥ 𝐵𝐾. Using this, we can directly set the 

values of the heaps for each 𝐵 as the sorted values of the heaps in the given form, 𝐵′ < 𝐵 and 

(𝐵 − 𝐵′ − 1)𝐾 ≤ 𝑆′ < (𝐵 − 𝐵′)𝐾. The total complexity is 𝑂(𝐵2𝐾 log 𝐵𝐾). 

Again, we illustrate this by computing the values of the 𝐵 = 3 row in the table. The values on the relevant  

“diagonal” are: 𝜔0 + 4, 𝜔0 + 5, 𝜔1 + 0, 𝜔1 + 1, 𝜔0 + 0, 𝜔0 + 1. Thus, these (but sorted) are the first six 

values of the 𝐵 = 3 row.  

Subtask 8: 12 points, 100 total 

Finally, we need to see that the only “truly interesting” values of 𝑓 are ones where 𝐾 divides 𝑆. This is 

because, if 𝐾 does not divide 𝑆, then 𝑓𝐾(𝐵, 𝑆) = 𝑓𝐾(𝐵, 𝑆 − 1) + 1. Intuitively, this means that the values 

of 𝑓 come in chunks of 𝐾 sequential ones. This can easily be proven by induction on 𝐵, since the values 

for 𝑆 ≥ 𝐵𝐾 are all sequential and the “diagonals” from which we are taking the interesting values of 𝑓 

(where (𝐵 − 𝐵′ − 1)𝐾 ≤ 𝑆′ < (𝐵 − 𝐵′)𝐾) is 𝐾-aligned. Thus, we need to every 𝐾-th value of 𝑓, by 

looking only one interesting point per 𝐵′ (for a given 𝐵). Therefore, the “truly interesting” values of 𝑓 for 

a given 𝐵 are the sorted set of “truly interesting” values of heaps of the form (𝐵′, (𝐵 − 𝐵′ − 1)𝐾)𝐾. There 

are 𝐵 such values for a given 𝐵 and thus the total complexity is 𝑂(𝐵2 log 𝐵). 

Note that the structure of the table of “truly interesting” values is invariant of 𝐾. Its first few values (the 

ones needed for subtask 4) are given below (rows are indexed by 𝐵 and columns – by 𝑆/𝐾): 

𝜔0 + 0𝐾 𝜔0 + 1𝐾 𝜔0 + 2𝐾 𝜔0 + 3𝐾 𝜔0 + 4𝐾 𝜔0 + 5𝐾 

𝜔0 + 0𝐾 𝜔1 + 0𝐾 𝜔1 + 1𝐾 𝜔1 + 2𝐾 𝜔1 + 3𝐾 𝜔1 + 4𝐾 

𝜔0 + 0𝐾 𝜔0 + 1𝐾 𝜔2 + 0𝐾 𝜔2 + 1𝐾 𝜔2 + 2𝐾 𝜔2 + 3𝐾 

𝜔0 + 0𝐾 𝜔0 + 2𝐾 𝜔1 + 0𝐾 𝜔3 + 0𝐾 𝜔3 + 1𝐾 𝜔3 + 2𝐾 

𝜔0 + 0𝐾 𝜔0 + 1𝐾 𝜔0 + 3𝐾 𝜔1 + 1𝐾 𝜔4 + 0𝐾 𝜔4 + 1𝐾 

𝜔0 + 0𝐾 𝜔0 + 2𝐾 𝜔0 + 4𝐾 𝜔1 + 2𝐾 𝜔2 + 0𝐾 𝜔5 + 0𝐾 
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