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Given the problem constraints one can guess that the answer for each possible 

range of rows (i,j), (1<=i<=j<=N) should be precomputed before the queries, so 

that we can answer each of them with O(1) complexity. 

 

Precomputing:Precomputing:Precomputing:Precomputing:    

 

We would start processing the rows from top to bottom and for each chosen j (j 

would be the upper row bound, meaning the bigger) we would choose all possible 

lower bounds 1<=i<=j, starting from the top again. 

 

Let dp[i][j] be the are of the biggest table we can fit between rows [i,j], 

then: 

� dp[i][j] = max(dp[i][j-1], max(dp[i+1][j], A
j-i+1

)), where A
j-i+1

 is the are 

of the biggest table that fits between [i,j] doesn't contain ones and has 

height (j-i+1). 

 

Given the order in which we are processing the ranges it follows that if we are 

computing dp[i][j], then we would have information for dp[i][j-1] already but 

not for dp[i+1][j]. This means that while we are processing all possible lower 

bounds (i from 1 to j) we would be computing dp[i][j] with the formula: 

� dp[i][j] = max(dp[i][j-1],  A
j-i+1

) 

 

Once we have traversed all possible lower bounds i from top to bottom, we would 

traverse them again, but from bottom to top (i.e. starting from j, going to 1) 

in order to compare our current optimal result for dp[i][j] with dp[i+1][j], 

i.e. for each i we do: 

� dp[i][j] = max(dp[i][j], dp[i+1][j]) 

 

The only thing that is left is to compute A
j-i+1

 for all i, where 1<=i<=j. In 

other words we need to compute the biggest tables of height in the range [1,(j-

i+1)] that are lying on row j. 

 

Computing  AComputing  AComputing  AComputing  A
jjjj----i+1i+1i+1i+1

::::    

 

For each column of row j we would find how much can we go up until we reach a 1, 

let h[j] be the number of rows we can go up like this, including the row j. For 

example, given the table: 

 

0 1 0 0 

1 0 0 0 

0 0 0 0 

 



For the last row we have the following values of h: h[1] = 1, h[2] = 2, h[3] = 

h[4] = 3. For each h[k] we would compute the minimum p, where p<=k such that 

h[l] >= h[k], for all l in [p,k]. Let Left[k] = k-p+1, we define similarly 

Right[k] = p-k+1, where p is the maximum p (p>=k) such that h[l]>=h[k], for all 

l, which are in [k,p]. 

 

In the given example we have Left = {1,1,1,2}, Right = {4,3,2,1}.  

Both Left[] and Right[] can be precomputed (separately) in O(n) complexity, 

using a stack structure. In it we would keep pairs(h,w), such that if one 

pair(h1,w1) is on the top of another pair(h2,w2) in the stack then h1 should be 

bigger than h2. This is how we would use such a stack to compute Left[], for 

example: 

 

      sz = -1; 

 

      for( int j = 1; j <= m; ++j ){ 

 

  

 

 sum = 0; 

 

 while( sz >= 0 ){ 

 

   if( st[sz].first >= h[j] ) {sum += st[sz].second; sz--;} 

 

   else break; 

 

 } 

 

  

 

 st[++sz] = make_pair(h[j], sum + 1); 

 

 Left[j] = sum + 1; 

 

  

 

      } 

 

In the above C++ code h[] and Left[] are as explained above and st[] is an array 

of pairs used as a stack. 

In a similar way can be computed Right[j] if we simply loop from j = m to 1. 

 

Given Left[] and Right[] we want to compute A[len], where 1<=len<=(j-i+1), and 

A[len] gives the maximum width of a table with height len that does not contains 

ones inside and lies on the j

th

 row. It is not difficult to see that A[len] = 



max(A[len+1], max(Left[k] + Right[k] ̄ 1)), where max(Left[k]+Right[k]-1) is the 

maximum such sum for which h[k] = len. 

 

Now that we have computed A[], A
j-i+1

 is simply equal to A[j-i+1]*(j-i+1). 

 

Given the above analysis the solution of this problem should have a complexity 

of O(N*M). For clarifications please check the author's solution ̄ standard.cpp. 


