Desired Solution

We begin by reformulating the problem. Let ppre; = Z;:l d;- For each position 1 < j < p, define §(;) as the number of
stars Ian can collect if he starts at position ;. Then: §(3) = [{j 2 i | ; < pre; — prei-1}|

There are two neat approaches to solving this problem efficiently, both based on computing all values of §(;).

Full Solution 1

We modify the condition, note that 7] < prej — prei-1 — prei-1 < prej — tj- We define aj = prej — tj then the
formula for §(;) becomes §(;) = |{3 > aj = prerl}‘- We compute §(;) by enumerating ; from right to left. We
maintain a multiset that stores all current values of aj for j > 4. For each 4, we first insert g;, then we compute how many

elements in the multiset are = prei—1-

This yields an O (v log) solution using either a Binary Indexed Tree (Fenwick Tree) or an ordered set (e.g.,
__gnu_pbds::tree in C++). Time Complexity: O(N lOg N)

Full Solution 2

Using the same simplification §(;) = |{ j=i | a; = pTez‘fl}L we now observe that if there exists j < 4 such that
prej—1 = pre;—1. then starting from 4 is never optimal. This means that we only need to consider starting positions 4 such that

prei-1 is the minimum in the prefix, we call these valid starting positions.

We compute §(;) for these valid starting positions by sorting all a; 1n non-increasing order. Then we iterate over all valid
starting positions 5 in increasing order. We maintain a set 4 of indices j > ; such that aj > pre;—1. We remove any indices
j < 4in A, since they are no longer valid. After the cleanup, S(7) = | Al. We can use a priority queue or a multiset to maintain

and update 4 dynamically. Time Complexity: O(N log N)

Subtask 1 (;y < 2000)

These subtasks are intended for brute-force solutions. For each starting point 4, simulate and count the amount of stars Ian can

collect. Time Complexity:O(N 2)

Subtask 2 (at most 20 negative (,'s)

This subtask supports Solution 2. Since at most 20 prefix sums may decrease (due to negative values), the number of valid
starting positions is at most 20. By identifying all valid starting positions and simulate each in ()(/), we obtian a solution to

pass this subtask. Time Complexity: Q(|{7 : P, < 0}])

Subtask 3 (no positive ;)

Since all ¢; <0, pre; is a non-increasing sequence. We can use binary search to count the number of indices which satisfy the

inequality q; = pre;—1 as described in the full solutions. Time Complexity o(nlog N)

Subtask 4

This subtask is intended to encourage a simplified version of Solution 1. Since the number of stars collected is at most 20, we
can calculate the amount of elements in the multiset that are > ppe;—1 by maintain the top 20 largest elements in a fixed-size
array, using std::set and prev() function, orusea priority queue and pop elements greater than ppe;-1 until none

remain. Time Complexity: O(V log N + N x ans) or O(V log v x ans) depending on which data structure is used

