
Navigation – Analysis

Author: Emil Indzhev

Part I

Subtasks 1-4

1 Subtask 1: Cycle

The idea is to circle around the circle.

We need 2 colors: INIT and DONE. Always set the current node to DONE and go to an INIT. Otherwise, if no

INITs, terminate.

Code: emil_cycle_2.cpp

2 Subtask 2: Star

The idea here is that we can distinguish whether we are in a leaf or the base of the star. So we’ll just visit all leaves

and mark them and then terminate.

We need 2 colors: INIT and DONE. If in a leaf, set the current node to DONE and go to the base of the star. If in

the base of the star, go to an INIT leaf. Otherwise, if no INIT leaves, terminate.

Code: emil_star_2.cpp

3 Subtask 3: Path

The idea is we go to 1 end of the path and then to the other and then terminate.

We need 3 colors: INIT, LEFT and DONE. First, if we see no DONEs, we are in phase 1, so we set current node to

LEFT and move to an INIT. If no INITs, switch to phase 2. In phase 2: set current node to DONE and move to

an INIT or a LEFT. If no INITs and no LEFTs, terminate. Notice that phase switching and termination can only

happen in leaves.

Code: emil_path_3.cpp

4 Subtask 4: Tree

The idea is to run a DFS.

We need 3 colors: INIT, DFS and DONE. INITs are unvisited nodes. DONEs are visited nodes whose full subtree

has been explored. DFSes are nodes that are currently on the path from the start (root) to the current node (i.e. they

are on the DFS stack).

The strategy is: if we see any INITs, set the current node to DFS and go to an INIT. Otherwise, if we see any

DFSes (there can be at most one), set the current node to DONE and go to the DFS. Otherwise (we must be in the

root), terminate.

Code: emil_tree_3.cpp
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Part II

Subtasks 5-7

5 The problem

We can try running this on a non-tree and the issue is when we need to backtrack but the current node has a back-

edge. Then we see multiple DFS nodes and cannot know which way to go.

There is a “known” approach that works on general graphs, seen in some past problems (such as Robot at IOI 2023)

of running a BFS using layered DFS runs that expand it by 1 layer each time. The idea is that a BFS tree has no

back-edges (only edges to the previous, current or next layers). So we can record the distance from the root to the

current node modulo 3 and this way we can classify each edge. Naively, such a solution might take 19 colors, but

it is possible to do this with 8 colors. However, this approach cannot be used for this problem, since the number of

iteration it needs is 𝑂(𝑁2), while here we need 𝑂(𝑁) iterations.

In general, anything that is not effectively a DFS will need a superlinear number of steps. Therefore, we want to

do a DFS. However, we can see that this is not possible on a general graph: In order to backtrack, we need to

have a way to recover the DFS stack, which is basically a permutation. The issue is that there are 𝑁! possible
permutations, while there are only 𝑁 × 𝐶𝑁 possible configurations (for some constant 𝐶). Thus, we need to take

advantage of the fact that the graph is a cactus.

6 Solution with 𝑁 + 1 colors

The above argument does not hold if 𝐶 = 𝑁. One simple solution that works even in a general graph is to run a

DFS, but instead of a DFS color have 𝑁 DFS-like colors, marking the depth of the node. Then when we backtrack,

we just go to the deepest node with depth smaller than ours (this way we don’t even need a DONE color). If we

need to backtrack from the root (which has depth 0), we terminate. This solution actually only does 2𝑁 iterations.

It gets 15% of the points for these subtasks.

Code: emil_cactus_bad_n+1.cpp

7 Subtask 5

This subtask serves a few purposes.

Firstly, it allows solutions with 𝑂(MaxDegree) number of colors (due to storing which node is our parent), which

rely on the fact that the order of adjColors is consistent across multiple visits to the same node. This again,

works on a general graph with bounded degree.

Secondly, it simplifies some of the cases of most of the full solution ideas and allows easier elimination of some

of their colors. Notably, in this subtask, each node is part of at most one cycle, which simplifies a lot of things.

Additionally, since the starting node has degree 1, in most solutions we’d only start there and finish there, so we

don’t need to worry about special cases due to the root.

8 Key observations

The key observation is that in a cactus back-edges are much more well behaved than ones in a general graph. This

results in several concrete observations. Various solutions (and variations on these solutions) use one or both of

these or further more specific observations.

1. Each node has at most 1 back-edge (this is because the parent to self edge would otherwise be in two simple

cycles). Therefore, while running a DFS, the current node sees at most 2 nodes on the DFS stack.

2. If a node has a back-edge, its parent cannot have a back-edge (this is because the grandparent to parent edge

would be in two simple cycles).
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9 Solutions

We have 3 very distinct types of solutions:

1. Storing parent information along the DFS path/stack.

2. Storing no extra information and instead finding it when we need to backtrack.

3. Storing child information along the DFS path/stack.

Some of these end up being slightly worse than others, but all can net a high score on the problem. We also believe

studying them is useful, since the techniques in them can be useful for other problems.

9.1 Storing parent information

9.1.1 Storing the parent’s index

Since each node sees at most 2 DFS-like nodes (one of which is its parent), we can simply record which of the 2 is

its actual parent. Basically, for all DFS-like colors, we have 2 versions, specifying which node is the current node’s

parent.

The colors we need are: INIT, DONE, DFS_1/2, DFS_FRONT_1/2, DFS_NEW_1/2 (8 in total).

Each time we go to an INIT, we leave the current node in a DFS_FRONT color. Then its child can identify it as

its parent and figure out the parent’s index (0 or 1) among the DFS-like nodes it sees. Then the child is colored

to a DFS_NEW color and we go to the parent. Now the parent returns to a DFS color and goes to the DFS_NEW

color it sees (the child). After that, we proceed normally. Notice that this procedure allowed us to tell a node who

its parent is and store that information in the node, while returning the parent to a regular color. Finally, when we

need to backtrack, we just backtrack to the correct parent DFS-like node according to the index the current node

stores. This solution needs 4𝑁 time, since the robot goes through each tree edge 4 times (and doesn’t go through

back-edges).

Code: emil_cactus_par_8.cpp

We can optimize this to 6 colors by removing the DFS_NEW one. We can merge it with the DFS_FRONT ones.

Everything works normally, except that when we are in a DFS_FRONT node, we figure out whether it is the original

DFS_FRONT or the original DFS_NEW based on whether it sees another DFS_FRONT node.

Code: emil_cactus_par_6.cpp

9.1.2 Marking the parent

The issue with the above ideas (besides needing 4𝑁 iterations) is that the number of DFS-like colors is multiplied

by 2 due to storing the index of the parent in the node. A much better idea is to simply mark the parent on its own

node. Then when we need to backtrack, if we have a back-edge, we just backtrack to the marked parent. The key

is that we only need this marking if the current node has a back-edge. And, if that is the case, no node can have a

back-edge to the current node’s parent.

More concretely, we still follow a similar DFS/DFS_FRONT procedure. However, when we enter INIT we nor-

mally just backtrack, leaving it as INIT (which means we enter the DFS_FRONT parent, which is turned into DFS

and we go back to the INIT child). This allows us to reuse DFS_FRONT as the parent marker too. However, if

we detect that we need to mark the parent (when we enter an INIT node and we see 2 DFS-like nodes), we simply

proceed without going back to the parent. Thus, the parent is naturally left in the DFS_FRONT state. This needs

only 4 colors, but still 4𝑁 iterations.

Code: emil_cactus_parimp_4.cpp

9.2 Storing no extra information

In this solution we won’t record any extra info while running the DFS. Instead, we’ll figure out which node is our

parent when we need to backtrack. If we only see one DFS-like node, we just go to it. If not, then we must have
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a back-edge. Therefore, our parent cannot have a back-edge. Therefore, our parent would see only one DFS-like

node (excluding the current node). On the other hand, any other DFS-like node would see at least 2 DFS-like nodes

(its parent and its child); however, the root is an exception to this (so we can use an extra color for it – notice that

this case does not matter in subtask 5).

The colors we need are: INIT, DONE, DFS, DFS_ROOT, PARSEEK, PARFOUND, DFS_PAR, DFS_NOTPAR (8

in total).

The color DFS_ROOT will be used only for the root. That way, if we see a DFS node and a DFS_ROOT node, we

know the DFS one is our parent. So the only issue is if we see 2 DFS nodes. In that case, we mark the current node

with PARSEEK, meaning we are looking for its parent. Then we go to a DFS node. Then (we know we are in this

case, since we see a PARSEEK node), we check whether it is the parent or not (based on how many DFS-like nodes

it sees). If yes, set it to DFS_PAR. Otherwise, set it to DFS_NOTPAR. In either case, go back to the PARSEEK

node. There, we may need to do this again until we see a DFS_PAR node.

Oncewe see aDFS_PAR, we need to clean up theDFS_NOTPAR ones (if any), color the current node inPARFOUND

and go to the DFS_NOTPAR. There, color it in DFS and go back to the PARFOUND node. Finally, set the current

node to DONE and go to the DFS_PAR node. Notice that it will be overwritten with DFS (if exploring further),

DONE (if backtracking) (PARSEEK cannot happen).

This solution does at most 6 steps per node with back-edge. In a cactus, at most half the nodes have back-edges

(the maximum number of edges is 3𝑁/2). Therefore, in total we get 2𝑁 + 6𝑁/2 = 5𝑁 iterations. Notice that it

doesn’t use the ordering of the adjacency list being consistent.

Code: emil_cactus_find_8.cpp

There are multiple possible optimizations, which can mostly be done in any order. We’ll present one order of doing

them, but you can also find codes for some other orders in the sample solutions.

9.2.1 Removing PARFOUND

First, we can remove PARFOUND, its only purpose is to tell the DFS_NOTPAR node that it needs to clear itself.

However, this is the only situation in which we are ever in a DFS_NOTPAR node. Therefore, we can merge

PARFOUND with PARSEEK.

Code: emil_cactus_find_7_no-found.cpp

9.2.2 Removing DFS_ROOT

We can also remove the DFS_ROOT and merge it with DFS with one key observation. Let’s see what the issue is

if we do this. Everything works, until we have a back-edge to the root. If we first try our actual parent, everything

is fine. However, if we try the root, it looks just as if it is our parent (only sees one DFS-like node), so we’ll

mistakenly go to it. However, we can imagine this as something like a DFS (which keeps a stack of nodes), but at

this point flipping the stack, i.e. swapping which side we’re expanding from. The important invariant that all the

DFS-like nodes form a single path still holds. Therefore, we’ll still visit all nodes and then terminate (though this

termination might just not happen from the root, which is not an issue). Notice that the new subtree of the old root

cannot have back-edges to above the root (in the flipped stack). Additionally, the other end of the stack (the new

root) has visited all of its other children, so it will never be a back-edge. Therefore this stack-flipping/rerooting

operation will only happen once.

Code: emil_cactus_find_6_no-found-root.cpp

9.2.3 Removing DFS_NOTPAR

Next, we can also exploit the fact that we have consistent ordering in order to remove DFS_NOTPAR and merge

it with DFS. This optimization will also lower the number of iterations to 3𝑁. When we try a node (i.e. when we

see PARSEEK), we’ll just either mark it with DFS_PAR or leave it as DFS and return to the PARSEEK node. Then

when we are in PARSEEK (note that we are not actually in PARSEEK before we try the first of the 2 DFS nodes),

we can see that either we found the parent (so we just backtrack to it) or did not (in which case we only see 2 DFS

nodes). In that latter case we can just backtrack to the other DFS node (i.e. at the start always try the left DFS node

and in this case always backtrack to the right DFS node). Besides removing one color, this also makes us only do

2 extra steps per back-edge, for a total of 3𝑁 steps, which also lets us get points from subtask 7.
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Code: emil_cactus_find_5_no-root-found-notpar.cpp

9.2.4 Removing DFS_PAR

Finally, we can merge PARSEEK and DFS_PAR in a similar way to how we merged DFS_FRONT and DFS_NEW

in the other type of solution. Now, we when the current node is in this new PARSEEK_OR_PAR color, we treat it as

PARSEEK when we see 2 DFS nodes or see another PARSEEK_OR_PAR node (which we treat as DFS_PAR). We

also treat it as PARSEEK, if we are in a DFS node and see a PARSEEK_OR_PAR (it is just PARSEEK). However,

if we are in PARSEEK_OR_PAR, but see no other PARSEEK_OR_PAR and see at most 1 DFS node, we must be

in DFS_PAR.

Code: emil_cactus_find_4_no-found-root-notpar-par.cpp

9.2.5 Variations

Next are some interesting variations not covered above, that would be interesting to understand and show useful

techniques for such problems. Additionally, it is interesting to see what the best solution is if the adjacency list is

unordered (e.g. if the grader shuffles it each time).

9.2.6 Clearing DFS_NOTPAR with PARSEEK_OR_PAR

Let’s seewhether we can remove theDFS_PAR color (merge it withPARSEEK) without removing theDFS_NOTPAR

color (and without depending on the consistent order of the adjacent nodes).

There is an issue when we try to clear DFS_NOTPAR and see two PARSEEK_OR_PAR nodes (can happen when

there is a triangle, i.e. a cycle with 3 nodes). In this situation we can simply guess which node is the PARSEEK

one and go to it (clearing to DFS, as usual). Then when we are in a PARSEEK_OR_PAR node, but see INITs, this

must have happened and we must have guessed wrongly, so we just go to the adjacent PARSEEK_OR_PAR (while

keeping that node as PARSEEK_OR_PAR) – this fixes the wrong guess with one extra step. Notice that in case the

DFS_PAR had already visited all its other children, we may mistakenly think it is the real PARSEEK. However, this

is not an issue, since this just mean we backtrack the other way around the triangle but everything is still correct

after that. This ends up with 5.5𝑁 iterations in total.

Code: emil_cactus_find_5_no-found-root-par.cpp

9.2.7 Lazy DFS_NOTPAR clearing

In all of the above solutions that do have DFS_NOTPAR we can actually just not clear it. Let’s look at doing this

on our simplest solution. When we are in PARSEEK and see a DFS_NOTPAR, we will just backtrack to the DFS

node. This would leave some DFS_NOTPAR nodes lying around, but no node would have them as a back-edge.

Additionally, that node’s child cannot have any back-edge. Therefore, we never see both DFS and DFS_NOTPAR

while traversing normally. So we just act normally or backtrack to the DFS_NOTPAR, if it is the only DFS-like

node we see. This solution only does 3𝑁 steps, which means we can pass the last subtask even without any of the

other optimizations.

Code: emil_cactus_find_7_no-found_lazy-notpar.cpp

The above argumentation only works until we remove the DFS_ROOT color. This is because once we switch the

root the stack is flipped. There are no back-edges from the new subtree of the old root until we backtrack above

the root. Then it is possible for some node to have a back-edge to a DFS_NOTPAR node. However, in that case

it would also have a regular DFS node and that must be its parent. Additionally, such a node cannot have another

back-edge. Therefore, we can just ignore the DFS_NOTPAR nodes unless we see no DFS node, in which case

we backtrack to the DFS_NOTPAR node. All of this also works if we merge PARSEEK and DFS_PAR, so this is

actually a cleaner resolution to the issue from before. Thus we get a 5 color, 3𝑁 iterations solution to the unordered

version of the problem.

Code: emil_cactus_find_5_no-found-root-par_lazy-notpar.cpp
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9.2.8 Lazy PARSEEK clearing

In the previous solutions, we merged PARSEEK and DFS_PAR. Note that DFS_PAR is needed only for clearing

PARSEEK. Another idea is to simply not clear PARSEEK immediately (if we happen to guess the right parent, but

just leave it there).

Of course, to have any chance, we need to only go to PARSEEK, if it looks like we might be answering its query,

i.e. if we see 2 or more DFS-like nodes. There is still an issue with this – if we later mistakenly think we are

answering the PARSEEK; this can only happen if we actually are in the middle of answering another PARSEEK

and we are not the parent (if we just backtracked to the current node, we would only see 1 DFS node – we cannot

have a back-edge since our child did). When this happens, we might go to the wrong PARSEEK and then think we

are answering it that we are the wrong parent and go to its other adjacent DFS-like node. After that, we turn out to

be in the middle of the DFS path with no PARSEEK around us, so we end up losing. This actually cannot happen

on subtask 5, so it is a valid solution for it.

However, we can see that the issue comes from the current node’s ex-children being marked as PARSEEK – they

will always be earlier in the adjacency list than the new PARSEEK. Therefore, we can fix this solution by always

answering the latest/rightmost PARSEEK in our adjacency list. This needs only 4 colors and does 3𝑁 iterations, so

it is also a full solution.

Code: emil_cactus_find_4_no-found-root-notpar-par_lazy-parseek.cpp

9.3 Storing child information

One other idea, similar to the one storing the parent’s index, is to store the child’s index. Namely, whenever we

go down towards a child, we can see what its index (among the DFS-like nodes) will be and store it in the current

node. Then when we need to backtrack from a node and it sees multiple DFS-like nodes, we can guess which one

the parent is. If we choose right, we are done. If we choose wrong, we can use the stored child indices to descend

down to the correct parent (without changing any colors along the way). This sounds like it might need 𝑂(𝑁2)
steps, but we can notice that we go around each cycle at most once, this this would actually be just 3𝑁 steps.

Now we just need to figure out how to know that we are in this descend mode. For non-root nodes without back-

edges, we can tell by simply checking whether the number of seen DFS-like nodes is 2 or 1: if 2, we are descending;

if 1, we are in the regular mode. For the root, for now, we can just have a special color (and we never backtrack

to it unless it is the only option). Finally, we can notice that we never need to descend through nodes with back-

edges (since it is impossible to have a back-edge to a parent/grandparent of theirs), so they don’t need to store child

information. We can just have a special color for such nodes (found by seeing 2 DFS-like nodes when in an INIT

node). Lastly, we need to not backtrack to such nodes, if we see regular DFS-like nodes. This solution uses 6 colors

and needs 3𝑁 iterations.

Code: emil_cactus_child_6.cpp

We can optimize this solution in a similar way to our main one and simply remove the color for the root. This means

that we may backtrack to it (if we guess wrongly). Then the root starts exploring its other subtrees (and we never

encounter back-edges to the first subtree). Finally, we start backtracking through the first subtree (and exploring

any unexplored branches). In this last part, the notations of child indices of the not-yet-backtracked nodes are

wrong. However, we can never see back-edges to them, since that would break the cactus property (as that whole

path is part of a cycle). Therefore, this is fine and would work. This uses 5 colors (and still 3𝑁 iterations). It is the

best solution we have for the unordered version of the problem.

Code: emil_cactus_child_5_no-root.cpp

10 Even better solutions?

We do not known whether a 3 color solution exists or whether a 4 color one exists for the unordered version of the

problem. However, we have proven (using a bruteforce) that a 2 color solution does not exist even for a path (even

in the ordered version).

Similarly, we do not know whether a faster than 3𝑁 solution exists with a constant number of colors for the ordered

or the unordered version of the problem.
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