
Grid – Analysis

Idea: AmirReza PourAkhavan, Mohammad Hossein Paydar, Implementation and Analysis: Ivan Lupov

The analysis will focus over the subtasks with 𝑁 = 1. For their two dimensional counterparts it is enough to store and

process the relevant information for all columns the same way it is stored for a singular row. This way we will take care of

jumps that move in the same column. Also note that for clarity we skip the row index in any mentions of 𝑎 – it is implied

to be equal to 0.

Subtask 1: 𝑁 = 1, 𝑀 ≤ 200

The dynamic programming state dp[𝑥] = max cost to reach position x should be obvious to contestants. Here it is enough

to iterate over the position 𝑦 < 𝑥, such that 𝑦 → 𝑥 is the last jump before steping on position 𝑥.

Subtask 2: 𝑁 = 1, 𝐴𝑗 ≤ 𝐴𝑗 + 1

The additional restriction here allows for a greedy idea: if possible, it is always better to jump as far as possible – the

penalty stays the same but the difference in |𝑎𝑗 − 𝑎′
𝑗| can only grow. Thus it is optimal to jump from (0, 0) to (0, 𝑚 − 1)

immeadiately. It is worth noting that in the 2d case there appear to be two paths (0, 0) → (0, 𝑚 − 1) → (𝑛 − 1, 𝑚 − 1)
and (0, 0) → (𝑛 − 1, 0) → (𝑛 − 1, 𝑚 − 1) however both of them give the same number of coins.

Subtask 3: 𝑁 = 1, 𝐶 = 0

Here there is no penalty for making jumps and since |𝑥 − 𝑦| ≥ 0, we can feel free to spam them. Making short jumps

between adjacent cells in the grid is optimal and since 𝑁 = 1 we can calculate the profit of this strategy with a simple

for-loop. In the 2d case we will have to use dynamic programming.

Subtask 4: 𝑁 = 1, 𝑀 ≤ 50 000

A common idea in problems involving some cost function with absolute values (e.g: |𝑥 − 𝑦|) is to split its computation

in two cases, depending on the sign of the inner value (here: 𝑥 − 𝑦). Returning to our dynamic programming idea from

subtask 1, here this reduces to:

dp[𝑥] = max{max
𝑦<𝑥

{dp[𝑦] + 𝑎𝑦 ∣ 𝑎𝑥 ≤ 𝑎𝑦} − 𝑎𝑥},max
𝑦<𝑥

{dp[𝑦] − 𝑎𝑦 ∣ 𝑎𝑥 > 𝑎𝑦} + 𝑎𝑥}}

In short, for lower (than 𝑎𝑥) values we care about the maximum dp − 𝑎 value and for higher we care about dp + 𝑎 value.

Here the time complexity is 𝑂(𝑚 log𝐴) where 𝐴 is the maximum value in the grid – still not optimal.

Subtask 5: 𝑁 = 1

Here we will develop the key idea of the solution. Coding the 100-points solution is simply a matter of taking care of the

columns the same way we will take care of the singular row now.

Key observation about the behaviour of the “absolute value” function is that |𝑥 − 𝑦| = max{𝑥 − 𝑦, 𝑦 − 𝑥}. This is really
convienient because writing our dynamic programming transition was some equation of | ⋅ |and maxs, but not we can make

it simply an equation of maxs.

dp[𝑥] = max
𝑦<𝑥

{dp[𝑦] + |𝑎𝑥 − 𝑎𝑦|}

= max
𝑦<𝑥

{dp[𝑦] + 𝑎𝑥 − 𝑎𝑦, dp[𝑦] + 𝑎𝑦 − 𝑎𝑥}

= max{max
𝑦<𝑥

{dp[𝑦] − 𝑎𝑦} + 𝑎𝑥,max
𝑦<𝑥

{dp[𝑦] + 𝑎𝑦} − 𝑎𝑥}

(1)

Thus it is enough to keep track of the maximum value only for the dp − 𝑎 and dp + 𝑎 expressions. Note that we group

terms such that all mentions of 𝑦 can be taken care of together – this is common when rearranging equations to get a neater

result.

1

