
EJOI 2025 Day 1
Task Collecting Diamonds
Analysis

Diamonds – Analysis

Problem: Cheng Zhong, Analysis: Iliyan Yordanov

We are given a directed weighted graph. The condition that each vertex has at least

one outgoing edge means there are no dead ends – there is always an edge to continue

along. Unlike classic graph problems, which maximize the total sum of weights, here the

comparison is based on lexicographic order. We have to find the sum of the first 𝐾 edges

on a lexicographically largest path (comparing the weights).

At first glance, this might seem easier: a straightforward simulation appears sufficient;

we begin the traversal at the starting vertex of the edge with the largest weight, and in

each round, we choose the currently accessible edge with the largest weight. However,

the situation is more complex because multiple edges may have the same weight, leading

to frequent ties for the maximum. Therefore, if we rely solely on simulation, each decision

may involve multiple tied maximums, resulting in exponential time complexity.

Subtask 1

The small constraints allow a direct BFS-like approach for the solution. We perform a

simulation where round 0 begins with all vertices active, and in each round, we select

the currently accessible edges with the largest weight and store their endpoints for the

next round. The answer is obtained by storing the sum of the weights for each round.

Code: diamonds6.cpp

Time complexity: 𝑂(𝑁 + 𝑀𝐾). Memory complexity: 𝑂(𝑁 + 𝑀𝐾).

Subtask 2

It is easy to see that the exponential behavior of the previous approach is because in each

round we unnecessarily repeat the same vertices multiple times. We can use a boolean

array to flag the vertices that have already been added to the next round or alternatively

store each round’s vertices in a boolean array (instead of an integer vector).

Code: diamonds5.cpp

Time complexity: 𝑂(𝐾(𝑁 + 𝑀)).
Memory complexity: 𝑂(𝑀 + 𝐾𝑁) or 𝑂(𝑀 + 𝑁) if we only store previous and current

round.

1 / 8

EJOI 2025 Day 1
Task Collecting Diamonds
Analysis

Subtask 3

This subtask is a major step toward the full solution because 𝐾 is large. We can see

that there is an optimal construction for the lexicographically largest path, since after

sufficiently many rounds, some edges (and vertices) must repeat because they belong to

the lexicographically largest sequence of weights among all possibilities.

Lemma 1: There exists a lexicographically largest path that begins with a simple path

(without duplicating vertices) and then repeats a simple cycle.

go to proof

If we know the optimal construction, it becomes a straightforward task to compute the

answer. The sequence of weights starts with some numbers and then it becomes periodic.

For greater 𝐾, we have to find the sum of the terms of a periodic sequence.

There are two approaches for the task – one is by doing smarter simulation round by

round and the other is by computing a dp to find the optimal decisions. Both approaches

require a bound on the number of iterations. One can experimentally or intuitively find

that this number of iterations is linear. In fact, two paths have identical sequences of

weights for all rounds if and only if they have identical sequences of weights for the first

2𝑁 rounds. We will discuss this in detail in the next subtask.

The first approach is a continuation of the idea in the previous subtasks. Let’s consider

we have made sufficiently many rounds (at least 2𝑁). This means the non-optimal paths

considered initially have already been eliminated, and we are now repeating the cycles of

the possible optimal constructions. However, it is not straightforward, since the optimal

paths can still be continued non-optimally for a couple of rounds (and then eliminated),

after that these non-optimal continuations reappear, and so on. We can see that the only

certain thing is that the starting vertices of all remaining paths need to be part of an

optimal construction, otherwise they would have been eliminated already. So for each

(𝑟, 𝑣), where 𝑟 is the round and 𝑣 is the vertex, it is enough to store a (𝑟 − 1, 𝑢) it came

from (if there are multiple options, it is enough to store one). Then, after 2𝑁 rounds, we

pick an arbitrary vertex, recover the path, and examine the starting part, which must be

an optimal construction (a path and then a cycle).

The other approach is to use dynamic programming 𝑑𝑝[𝑟][𝑣] = the optimal sequence of

weights starting from vertex 𝑣 and having 𝑟 rounds (which is also the length of the se-

quence). Let 𝑤(𝑣, 𝑢) denote the weight of edge (𝑣, 𝑢). We have the following recursive

relation:

𝑑𝑝[𝑟][𝑣] = max lexicographically
𝑢∶ for all edges (𝑣,𝑢)

{𝑤(𝑣, 𝑢), 𝑑𝑝[𝑟 − 1][𝑢]}.

As the constraints are smaller, we can compute the dp for sufficiently many rounds 𝑅

2 / 8

EJOI 2025 Day 1
Task Collecting Diamonds
Analysis

(at least 2𝑁) fast enough without optimizations. We pick the optimal sequence from

𝑑𝑝[𝑅][0], 𝑑𝑝[𝑅][1], ..., 𝑑𝑝[𝑅][𝑁 − 1]. There are different ways how exactly we can find the

answer. We can store additional information so we can find the vertices of the edges that

form the optimal sequence and then find the optimal construction from the vertices.

Another way, used in the implementations, is to use only the sequence of weights. For

this 𝑅 needs to be at least 3𝑁. We know the first elements must come from the path of an

optimal construction, so to identify the repeating cycle we temporarily ignore the first 𝑁
elements. As the length of the repeating cycle in the optimal construction is at most 𝑁,

we can find any valid repeating cycle in the sequence of the last 2𝑁 elements.

The only drawback with the second approach is the memory if we store directly the se-

quences in each state. We have to bemore efficient here and store the sequences as linked

lists so 𝑑𝑝[𝑟][𝑣] is only the head element of the sequence, and that element is linked to

some optimal (for 𝑣) 𝑑𝑝[𝑟 − 1][𝑢].

First approach Second approach

Code diamonds_iliyan_n2_mem.cpp diamonds4.cpp

Time complexity 𝑂(𝑁𝑀) 𝑂(𝑁2𝑀)

Memory complexity 𝑂(𝑀 + 𝑁2) 𝑂(𝑀 + 𝑁2)

Subtask 4

The constraints for this subtask make the graph consist of a single cycle or multiple

disconnected cycles. This subtask is given so that competitors can think more about

the cycles and the needed rounds for comparison. We can find the optimal traversal by

comparisons:

• For two traversals in the same cycle, we only need to compare their results of the

first 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑦𝑐𝑙𝑒) rounds;
• For two traversals in different cycles, we only need to compare their results of the

first 𝑙𝑐𝑚(𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑦𝑐𝑙𝑒1), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑦𝑐𝑙𝑒2)) rounds.

Although not necessary for this subtask, we can use the following lemma, which shows

that only a linear number of comparisons are needed for the second case.

Lemma 2: If two periodic sequences with periods 𝑝 and 𝑞 have the same first 𝑝+𝑞 terms,

then they are identical.

go to proof

There is an even stronger bound: it is enough to compare the first 𝑝 + 𝑞 −gcd(𝑝, 𝑞) terms

but this is not needed for the task and does not change the complexity. The lemma tells

us that we need approximately 2𝑁 rounds to compare any two cycles. In the general case

3 / 8

EJOI 2025 Day 1
Task Collecting Diamonds
Analysis

when the optimal construction starts with a path this would require approximately 3𝑁
rounds (additional 𝑁 to enter the cycle). But it is easy to see that still 2𝑁 rounds are

enough because the cycle and the path have to be disjoint (they cannot share vertices).

This is a tight bound as illustrated in the following example, where 2𝑁 − 3 rounds are

required to compare the two possible optimal constructions (there are also such tests

with a modified version):

1

3

2 2

2

2

2

1

2...22

0

1 2 3

4

N-2

N-1

......

Code: diamonds9.cpp

Time complexity: 𝑂(𝑁2). Memory complexity: 𝑂(𝑁).

Subtask 5

The task becomes much simpler when all 𝑑[𝑖] are distinct. There is only one maximum

choice for each round, so the only challenge is handling large 𝐾. It is easy to see that

the optimal construction is first a simple path and then repeating a simple cycle. So we

follow the maximum weight for each round until we find a cycle, and then we have to find

the sum of the terms of a periodic sequence. This subtask allows contestants to observe

the optimal construction more easily.

Code: diamonds_iliyan_unique_d.cpp

Time complexity: 𝑂(𝑁 + 𝑀). Memory complexity: 𝑂(𝑁 + 𝑀).

Subtask 6

This subtask is similar to the previous one as the optimal construction is much easier to

see than in the general case. Let edge (𝑢, 𝑣) be the one with weight 2. We should use the

weight 2 as often as possible. We have to start with (𝑢, 𝑣) and then return as quickly as

possible (using the fewest number of weight-1 edges) to vertex 𝑢. If this is not possible,
the answer is simply 2 + (𝐾 − 1) = 𝐾 + 1. Otherwise we have to compute how many

times we will use weight 2 and the answer is 𝐾+ this number. We can use BFS to find the

shortest path of 1-s from 𝑣 to 𝑢 or determine that no such path exists.

Code: diamonds8.cpp

Time complexity: 𝑂(𝑁 + 𝑀). Memory complexity: 𝑂(𝑁 + 𝑀).

4 / 8

EJOI 2025 Day 1
Task Collecting Diamonds
Analysis

Subtask 7

We now revisit the two approaches and discuss the different ways to optimize them to fit

the small memory constraint. There are two ways to optimize the first approach, which

relied on smarter round-by-round simulation. We can use a bitsetmemory optimization.

Instead of storing, for each (𝑟, 𝑣), a (𝑟 − 1, 𝑢) it came from, we can use one bitset per

round to record the vertices that are present. If we know the vertices in consecutive

rounds it is easy to find a path that starts from (0, 𝑣) and goes to (𝑅, 𝑢) for some vertices

𝑣 and 𝑢, and a final round 𝑅. If we are at (𝑖, 𝑥) and we have an edge (𝑥, 𝑦) in the original

graph, we have to check if vertex 𝑦 was present in the next round 𝑖 + 1, i.e. if (𝑖 + 1, 𝑦)
existed during the simulation. Once we find a path, we can compute the answer as before.

The second way to optimize the first approach uses the earlier idea of finding the answer

using only the sequence of weights. We can store the maximum weight that is used for

each round and construct the optimal sequence of weights without knowing the exact

path. Then, as described earlier, we can find the cycle by examining the last 2𝑁 elements

and then compute the final answer. (we still need at least 3𝑁 rounds of simulation)

For the second approach, we will first optimize the time complexity. We recall the recur-

sive relation:

𝑑𝑝[𝑟][𝑣] = max lexicographically
𝑢∶ for all edges (𝑣,𝑢)

{𝑤(𝑣, 𝑢), 𝑑𝑝[𝑟 − 1][𝑢]}.

The bottleneck is the ”max lexicographically” comparison, which we previously did in

linear time, but this can be improved. We will keep a sorted list of 𝑑𝑝[𝑟 − 1][𝑣] (for fixed
𝑟 − 1) and we need to obtain a sorted list of 𝑑𝑝[𝑟][𝑣]. For this we can store in 𝑑𝑝[𝑟 − 1][𝑣]
”ranks” which are numbers that show the relative order of the weight sequences. To

obtain the sorted list of 𝑑𝑝[𝑟][𝑣], for each 𝑣 we use 𝑤(𝑣, 𝑢) as a primary key and 𝑑𝑝[𝑟 − 1][𝑢]
as a secondary key, where 𝑢 is the argmax in the relation above for 𝑣. Then we sort these

pairs lexicographically and find the new ranks for 𝑑𝑝[𝑟][𝑣]. We can even do this in linear

time as we can do a radix sort over the pairs. It is also possible not to fix the number

of iterations and terminate when the ranks stop changing.

Now we have good time complexity and we will find the optimal construction in the fol-

lowing way. Suppose we have all 𝑑𝑝[𝑅][𝑣] for some number of rounds 𝑅, and we construct

a new graph with the edges (𝑣, 𝑢) for each 𝑣, where 𝑢 is the argmax in the dp relation

for 𝑑𝑝[𝑅][𝑣]. We claim that if 𝑅 is at least 2𝑁 and we start from the optimal 𝑣 (with the

highest rank 𝑑𝑝[𝑅][𝑣]), and follow these edges, we will find an optimal construction. This

is because all paths with such length starting from 𝑣 must follow an optimal construction

so even if there are ties for argmax for 𝑣, all of them will be part of optimal constructions.

A similar argument holds for the other vertices we visit along the path since non-optimal

possibilities would be eliminated for large enough 𝑅. Thus, we directly obtain the optimal

5 / 8

EJOI 2025 Day 1
Task Collecting Diamonds
Analysis

construction, from which the answer follows as before. For this solution, 𝑅 = 𝑁 is also

sufficient, since the dp takes a more global view and removes non-optimal possibilities

from the beginning, and needs additional iterations to propagate that information.

First approach Second approach

Code
diamonds_encho_bitset.cpp,

diamonds7.cpp

diamonds1.cpp,

diamonds_iliyan.cpp

Time complexity 𝑂(𝑁𝑀)
𝑂(𝑁𝑀 + 𝑁2 log𝑁) or

𝑂(𝑁𝑀 + 𝑁2)

Memory complexity
𝑂 (𝑀 + 𝑁2

64) for the bitset and

𝑂(𝑁 + 𝑀) for the other solutions
𝑂(𝑁 + 𝑀)

Final thoughts

During testing, we found a particular variation of the first approach. Instead of reasoning

about the number of rounds, we can terminate if we repeat the same set of vertices during

a round (which we can find using hashing). Then the cycle is the sequence of weights

between the two repetitions. It turns out exponentially many rounds may be required for

the repetition to happen so we still require a bound for the rounds. The best type of test

we came up with to battle such cheat solutions is the following:

3

3
3

1

2

1
2

1

2

1

2

1

2

1

2

0 1 2

3

4 5

6 7

8 9

10

1112

The base model is we have some constant 𝑘 and then we make cycles of lengths

𝑘, 2𝑘, 3𝑘, 5𝑘, 7𝑘, 11𝑘, … that repeat 1, 2, … , 𝑘 as weights (in the example 𝑘 = 2 and the cy-

cles are of lengths 2, 4 and 6). In this way we need the LCM of the lengths (a huge value),

as the number of rounds required to repeat the same set of vertices. Also if we terminate

early, it is not simple to compute the answer looking at the sequence of weights, since we

still have a non-trivial repeating cycle (the simplest correct way is to have a full solution

like diamonds7.cpp). Unfortunately, it turned out we had missed adding these tests in

the official test data so a few contestants passed by terminating early and computing the

answer in a wrong way.

The original proposal for this task was even harder, but we believe the current variant

is more appropriate for EJOI. In fact, it turned out to be slightly harder for contestants

than we initially thought.

6 / 8

EJOI 2025 Day 1
Task Collecting Diamonds
Analysis

Proof of Lemma 1

Lemma 1: There exists a lexicographically largest path that begins with a simple path

and then repeats a simple cycle.

Suppose a lexicographically largest path is: 𝐿 ∶= (𝑣0, 𝑣1), (𝑣1, 𝑣2), … . As the path is infinite

and the different vertices are only 𝑁, there has to be a repeated vertex. Let the first

repeated vertex be 𝑣𝑗, with its previous occurrence at 𝑣𝑖 (0 ≤ 𝑖 < 𝑗). This also means

that 𝑣0, 𝑣1, … , 𝑣𝑖−1 is a simple path and 𝑣𝑖, 𝑣𝑖+1, … , 𝑣𝑗−1, 𝑣𝑖 (𝑣𝑖 = 𝑣𝑗) is a simple cycle. Let

𝑃 ∶= (𝑣0, 𝑣1), (𝑣1, 𝑣2), … , (𝑣𝑖−1, 𝑣𝑖) and 𝐶 ∶= (𝑣𝑖, 𝑣𝑖+1), (𝑣𝑖+1, 𝑣𝑖+2) … , (𝑣𝑗−2, 𝑣𝑗−1), (𝑣𝑗−1, 𝑣𝑖).

We will prove the following claim by induction: for each 𝑟 ≥ 1, the sequence of weights

in 𝐿 starts with the sequence of weights of {𝑃 , 𝐶(𝑟)}, where 𝐶(𝑟) denotes 𝐶, … , 𝐶⏟
𝑟

.

Base case 𝑟 = 1. We know that the path 𝐿 starts with {𝑃 , 𝐶} so the claim holds.

Induction step. Let the claim be true for some 𝑟 ≥ 1. We will prove it for 𝑟 + 1.
The claim is true for 𝑟, so the weights of 𝐿 start with the weights of {𝑃 , 𝐶(𝑟)}, and we will

denote the edges after that with 𝑆. We will also denote 𝑃 ′ ∶= {𝐶, 𝑆}.

The sequence of weights of 𝐿 equals that of {𝑃 , 𝐶(𝑟−1), 𝑃 ′}. Since {𝑃 , 𝐶(𝑟−1), 𝑆} is a valid

path (with one fewer cycle), 𝑃 ′ must be lexicographically larger than or equal to 𝑆. If

they are equal, then we are ready as this would mean that the weights of 𝑆 are starting

with the weights of 𝐶 (since 𝑃 ′ = {𝐶, 𝑆}), so 𝑃 ′ is starting with weights 𝐶(2) and 𝐿 is

starting with weights {𝑃 , 𝐶(𝑟+1)}.

Let’s assume they are not equal. So there must be an edge in 𝑃 ′ with larger weight

than the corresponding one in 𝑆. Let the first such edge be 𝑒. If 𝑒 is in the cycle 𝐶,
then the cycle will be lexicographically larger than the corresponding part of 𝑆, so a path
{𝑃 , 𝐶(𝑟+1)} will be lexicographically larger than 𝐿, which is a contradiction.

The only remaining case is when 𝑒 is after the cycle 𝐶. This would mean that the sequence

of weights in the cycle 𝐶 is the same as the corresponding sequence of weights in 𝑆,
which means that the weights of 𝑆 are starting with the weights of 𝐶, and 𝐿 is starting

with weights {𝑃 , 𝐶(𝑟+1)}.

Thus, the claim follows by induction. This means that the sequence of weights in 𝐿 is the

same as the sequence of weights of {𝑃 , 𝐶, 𝐶, … }. Since {𝑃 , 𝐶, 𝐶, … } is a valid path, it is

a lexicographically largest path that begins with a simple path and then repeats a simple

cycle. �

7 / 8

EJOI 2025 Day 1
Task Collecting Diamonds
Analysis

Proof of Lemma 2

Lemma 2: If two periodic sequences with periods 𝑝 and 𝑞 have the same first 𝑝+𝑞 terms,

then they are identical.

Without loss of generality, assume 𝑝 ≤ 𝑞. Let the sequences be 𝑃0, 𝑃1, … and 𝑄0, 𝑄1, …

We will prove the following claim by induction: for each 𝑟 ≥ 0, the sequences have the

same first 𝑝 + 𝑞 + 𝑟𝑝 terms.

Base case 𝑟 = 0. As the sequences have the same first 𝑝 + 𝑞 terms, the claim holds.

Induction step. Let the claim be true for some 𝑟 ≥ 0. We will prove it for 𝑟 + 1.
Let’s assume the contrary and let 𝑝 + 𝑞 + 𝑟𝑝 ≤ 𝑖 < 𝑝 + 𝑞 + (𝑟 + 1)𝑝 be an index such that

𝑃𝑖 ≠ 𝑄𝑖. We have the following:

• As 𝑃 has a period 𝑝, we have 𝑃𝑖 = 𝑃𝑖−𝑝.

• As 𝑖 − 𝑝 < 𝑝 + 𝑞 + 𝑟𝑝, we have 𝑃𝑖−𝑝 = 𝑄𝑖−𝑝.

• As 𝑄 has a period 𝑞, we have 𝑄𝑖−𝑝 = 𝑄𝑖−𝑝−𝑞.

• So, 𝑃𝑖 = 𝑃𝑖−𝑝 = 𝑄𝑖−𝑝 = 𝑄𝑖−𝑝−𝑞.

Similarly, 𝑄𝑖 = 𝑄𝑖−𝑞 = 𝑃𝑖−𝑞 = 𝑃𝑖−𝑝−𝑞 (since 𝑝 ≤ 𝑞, we have 𝑖 − 𝑞 ≤ 𝑖 − 𝑝 < 𝑝 + 𝑞 + 𝑟𝑝).
But 0 ≤ 𝑖 − 𝑝 − 𝑞 < 𝑝 + 𝑞 + 𝑟𝑝, so 𝑃𝑖−𝑝−𝑞 = 𝑄𝑖−𝑝−𝑞 by the induction step and this means

𝑃𝑖 = 𝑄𝑖, which is a contradiction.

Thus, the claim follows by induction. This means that the sequences must be identical,

since we can pick an arbitrarily large 𝑟. �

8 / 8

	Diamonds – Analysis
	Subtask 1
	Subtask 2
	Subtask 3
	Subtask 4
	Subtask 5
	Subtask 6
	Subtask 7
	Final thoughts
	Proof of Lemma 1
	Proof of Lemma 2

