
Palindrome Count – Analysis

Problem: Iliyan Yordanov, Analysis: Ivan Lupov

Subtask 1

The constraint 𝑁 ≤ 20 allows any solution iterating over the possible configurations of removed and kept letters to pass.

One such is iterating over the integers from 1 to 2𝑁 and using their binary representations as bitmasks – if the bitmask

has 1 on some position, we keep the corresponding letter, otherwise remove it. For each configuration check that it is a

palindrome with a simple for-loop. Final complexity will be 𝑂(2𝑁𝑁).

Subtask 2

The higher constraints and the problem dealing with counting some number of objects should suggest a dynamic program-

ming solution. Let’s establish dp[𝑙][𝑟] as the number of palindromes considering only the substring 𝑠[𝑙 ∶ 𝑟] of the original
string.

Let’s first deal with the base cases of this approach: dp[𝑖][𝑖] = 1 for all 1 ≤ 𝑖 ≤ 𝑁. The transitions should be separated in

two cases – those that simply elongate the interval and those that create new palindromes.

If 𝑠[𝑙] ≠ 𝑠[𝑟], all the palindromes we should count can be calculated from previous values of dp, namely dp[𝑙][𝑟] =
dp[𝑙][𝑟 − 1] + dp[𝑙 + 1][𝑟] − dp[𝑙 + 1][𝑟 − 1]. Note that the last term takes care of any overcounting from palindromes that

appear in both the [𝑙, 𝑟 − 1] and the [𝑙 + 1, 𝑟] intervals.

Otherwise, in the case that 𝑠[𝑙] = 𝑠[𝑟], new palindromes will appear that append and prepend the character 𝑠[𝑙]. Do

not forget that there is also the palindrome made up of two repetitions of that character. Thus dp, namely dp[𝑙][𝑟] =
dp[𝑙][𝑟−1]+dp[𝑙+1][𝑟]+1 is the transition in this case. Here we don’t take care of any overcounting – the “overcounted”

palindromes are simply extended with the character 𝑠[𝑙] in the beginning and the end. Final time and memory complexity

is 𝑂(𝑁2).

Subtask 3

Although 𝑂(𝑁2) time complexity is good enough for 𝑁 ≤ 9000, this is not the case for the memory consumption. Here

we will look for a solution that uses 𝑂(𝑁) memory.

In the case of “range dp” solutions (such is our solution to subtask 2) it is often obvious that from the three quantities of an

interval – its left endpoint, right endpoint and length – we only need two of them to clearly define the interval and the third

one can be computed. If our solution has to calculate the answers for longer ranges from the answers for shorter ones, we

might as well exclude one of the endpoints from the dynamic programming and include in its place the length of the range.

That way we have dp[𝑙][𝑙𝑒𝑛] – the number of palindromes in the range [𝑙, 𝑙 + 𝑙𝑒𝑛 − 1]. How does our solution change?

For the base case, we instead have dp[𝑖][1] = 1 for all 1 ≤ 𝑖 ≤ 𝑁.

In the case of 𝑠[𝑙] ≠ 𝑠[𝑟] (more precisely, 𝑠[𝑙] ≠ 𝑠[𝑙 + 𝑙𝑒𝑛 − 1]) the transition will look like this: dp[𝑙][𝑙𝑒𝑛] = dp[𝑙][𝑙𝑒𝑛 −
1] + dp[𝑙 + 1][𝑙𝑒𝑛 − 1] − dp[𝑙 + 1][𝑙𝑒𝑛 − 2], and for 𝑠[𝑙] = 𝑠[𝑟] we get dp[𝑙][𝑙𝑒𝑛] = dp[𝑙][𝑙𝑒𝑛 − 1] + dp[𝑙 + 1][𝑙𝑒𝑛 − 1] + 1.

We can notice that in this form, the value of dp[𝑙][𝑙𝑒𝑛] only depends on the values in dp[∶][𝑙𝑒𝑛 − 1] and dp[∶][𝑙𝑒𝑛 − 2] – so

we can actually only keep 3 lines of the dynamic programming table as we are computing it, instead of all 𝑁.

1


