
operatingmachine
BOI 2024 - Day 2 Tasks

English (ISC)

Operating Machine
This is an interactive task. There is a hidden permutation P of size N containing all integers in the
range [0,N), and an integer variable X which is initially 0.

There is a machine with N buttons. Your code will interact by pressing those buttons. When you
press the i-th button, the machine will add 2 to X, and then return the popcount of X (the
number of 1’s in the binary representation of X).

Your task is to determine the hidden permutation P .

Note: The hidden permutation is fixed and does not change based on your queries.

Implementation Details

Include the header file machine.h .
Implement the following function: vector < int > find_permutation(int N); this
function should return a vector of length N representing the hidden permutation P .
You can use the following function: int press_button(int position); this function
takes an integer position in the range [0,N), representing the index of the button you are
pressing. It returns a positive integer, which is the popcount of X after pressing the button.

Scoring Details

Let T be the number of calls to press_button :

If T ≤ Q, you will get all the points for that subtask.
Otherwise, it is treated as Wrong Answer.

P [i]

operatingmachine (1 of 3)

Constraints

Subtasks

Subtask Points Additional Constraints

1 8 N = 2,Q = 400 000

2 15 N ≤ 10,Q = 400 000

3 32 N ≤ 500,Q = 400 000

4 25 N ≤ 3000,Q = 400 000

5 20 N ≤ 3000,Q = 250 000

Sample Grader

The sample grader reads the input in the following format:

Line 1: N
Line 2: P [0], P [1], ..., P [N −1]

Here, P is a permutation of size N , describing the hidden permutation your program needs to
guess.

Before calling find_permutation , the sample grader will check whether the vector P is a

permutation. If this condition is not met, it prints the message "Vector P is not a permutation" and

terminates.

If the sample grader detects a protocol violation, the output of the sample grader is Protocol

Violation: <MSG> , where <MSG> is one of the following error messages:

Invalid guess: in a call to press_button , the index is not valid, i.e., if you try to press
button L, and L is less than 0 or greater than or equal to N (the size of the permutation).
Invalid size: if the size of the answer vector is not equal to the size of permutation P .
Not a permutation: if the answer vector is not a permutation of the numbers in the interval
[0,N).

Otherwise, let A be the permutation your code returns, then you receive:

Line 1: Wrong Answer, if A is not equal to P , otherwise Accepted.
Line 2: A[0], A[1], ..., A[N −1]
Line 3: the number of calls to press_button .

operatingmachine (2 of 3)

Example

Consider a scenario where N = 5 and the hidden permutation is P = [4, 2, 0, 1, 3]. The function
find_permutation is called in the following way:

 find_permutation(5)

The function may make calls to press_button as follows:

Call Value of X Return value

 press_button(3) 2 1

 press_button(2) 3 2

 press_button(0) 19 3

 press_button(2) 20 2

The value of X during the interaction is unknown to us; we can only use the return value for each
call, which is the popcount of X.

After determining the hidden permutation (after some, possibly zero, calls to press_button), you

need to return the permutation.

In the previous example, you will only get points if you return [4, 2, 0, 1, 3], depending on the
number of calls to press_button .

operatingmachine (3 of 3)

