
lettereating
BOI 2024 - Day 1 Tasks

English (ISC)

Letter Eating
Bidik enjoys letters. He enjoys them so much, he feels compelled to eat a letter every now and then.
Bidik is given a matrix (of size n ×m) of uppercase Latin letters. Each letter is either old (‘O’) or new (‘N’).
Old letters are from 2023 and are worth 2023 calories, while new letters are from our current year
(2024) and are worth 2024 calories (each letter is worth 2023 or 2024 calories). He also has some
jumping power, a positive integer k. Bidik can’t jump too far between letters, so he will eat the letters
according to these rules:

Bidik has a preference for the first and last letters. Thus, he must always start his eating rampage
at the letter in position (0, 0) and end it at (n − 1, m − 1).

After eating a letter at position (i, j), he can only eat a letter at any position (a, b) (not equal to
(i, j)) such that:

i ≤ a

j ≤ b

|i − a| + |j − b| ≤ k

i.e., he can’t eat a letter that’s too “far”.

He can only eat letters in order, i.e., after A he can only eat B, after B he can only eat C, etc. After Z
he can eat A.
Eating an old letter gives him 2023 calories, while eating a new letter gives him 2024 calories.

As such, each possible sequence of letter-eating has some value associated with it, computed as the
sum of the calorie content of all the letters that were eaten. If there are no valid sequences of letter
eating, the maximum value Bidik can earn is 0.

Mile doesn’t want Bidik to be too stuffed, so he tries to stop him from eating letters. He has q possible
actions. In action p, he will choose the letter at (x ,y) and change it to t . For each action, he wants to
know if after performing the action, the maximum value Bidik can earn increases (Losho!), stays the
same (Arno!), or decreases (Dobro!). Note that the actions are independent of each other, i.e., they do
not affect the matrix Bidik was given.

p p p

lettereating (1 of 3)

Implementation Details

Implement the letter-eating function in the provided letter-eating.cpp file. Include the header file

letter-eating.h .

Implement the function

 vector< char > letter_eating(int n, int m, int k, int q,

 vector < vector < char > > c,

 vector < vector < char > > v, vector < int > x,

 vector < int > y, vector < char > t)

provided in the letter-eating.cpp file with the following parameters:

The aforementioned integers n, m, k, q (1 ≤ n,m,k, q ≤ 10 ,1 ≤ nm ≤ 10).
Two matrices with n rows and m columns c and v (0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1) represent the
letter and the age of the letter, respectively, at that position. c is an uppercase Latin letter, and v
is either ‘O’ or ‘N’, as described above.
Three arrays of size q, x , y , t (0 ≤ p ≤ q − 1), where each tuple (x ,y , t) represents a query
specified above.

Return an array of characters of size q, each entry containing a character equal to either ‘L’ for an
increased max value, ‘A’ for the same max value, or ‘D’ for a decreased max value.

Sample Grader

The sample grader has the following input format:

Line 1: n m k q

Line 2 + i (for 0 ≤ i ≤ n −1): m characters, c c ... c
Line 2 + n + i (for 0 ≤ i ≤ n −1): m characters, v v ... v
Line 2 + 2n + p (for 0 ≤ p ≤ q): x y t

5 5

ij ij

ij ij

p p p p p p

i1 i2 im

i1 i2 im

p p p

lettereating (2 of 3)

Example

Call Return Value

 letter_eating (3, 3, 2, 2,
{{ A, A, B },
{ D, B, C },
{ D, B, D }},
{{ N, O, N },
{ O, O, N },
{ N, N, O }},
{ 0, 2 },
{ 0, 2 },
{ Z, J })

{ L, D }

 letter_eating (6, 1, 3, 5,
{{ C },
{ D },
{ E },
{ D },
{ E },
{ F }},
{{ N },
{ N },
{ N },
{ O },
{ O },
{ O }},
{ 3, 1, 3, 3, 0 },
{ 0, 0, 0, 0, 0 },
{ Z, F, X, Y, D })

{ A, D, A, A, D }

Subtasks

(14 points) Answers will only be ‘L’ or ‘A’, n = 1, q = 1.
(16 points) Answers will only be ‘L’ or ‘A’, n = 1, k ≤ 100.
(10 points) Answers will only be ‘L’ or ‘A’, n = 1.
(11 points) k ≤ 100.
(19 points) q = 1.
(30 points) No further constraints.

lettereating (3 of 3)

